
K-Theory and G-Theory

of Algebraic Stacks
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Outline

• The lax-functor approach to stacks and al-

gebraic stacks

• Review: the smooth site, OS-modules, quasi-

coherent OS-modules, coherent OS-modules and

vector bundles

• Waldhausen categories and their K-theory

• Examples: G-theory and K-theory of alge-

braic stacks (definitions)

• Basic results on G-theory and K-theory of

algebraic stacks
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The lax-functor approach to stacks and al-

gebraic stacks

• (schms/S) ⊆ (alg.spaces/S) ⊆ (spaces/S)

⊆ (functors : (schms/S)op → (sets))

• (schms/S) ⊆ (alg.stacks/S) ⊆ (stacks/S)

⊆ (lax− functors : (schms/S)op → (groupoids))

Example: The stack of smooth curves of genus

g
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Review: the smooth site, OS-modules, quasi-

coherent OS-modules, etc.

• Definition: the smooth site of a given alge-

braic stack

• OS-modules, quasi-coherent, coherent OS-
modules and vector bundles

• Quasi-coherent vs. OS-modules
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Waldhausen categories: review

• Categories with cofibrations

• Categories with cofibrations and weak-equivalences

• Functor of Waldhausen categories

• K-theory of Waldhausen categories

• K-theory of exact categories

• The Gillet-Waldhausen theorem: K(E) ' K(Cb(E))
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The Waldhuasen approximation Theorem

Given F : C′ → C a functor of Waldhausen cat-

egories so that

i) F (f) is weak-equivalence in C if and only if

f is a weak-equivalence in C′ and

ii) any map x : F (C′) → C in C factors as x′ ◦
F (c′) where c′ : C′ → C′′ in C′ and x′ : F (C′′) →
C is a weak-equivalence in C.

Then K(F ) : K(C′) ' K(C) is a homotopy

equivalence.
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Examples of Waldhausen categories (for

algebraic stacks)

• G-theory: the K-theory of the category of

coherent sheaves, other interpretations (G(S))

• The K-theory of vector bundles (Knaive(S))

• K-theory: the K-theory of perfect complexes

(K(S))
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G-theory:basic properties

• Localization theorem S ′ ⊆ S closed with S ′′ =
S − S ′. Then G(S ′) → G(S) → G(S ′′) is a fi-

bration sequence and hence one has the long

exact sequence:

· · · → πn+1G(S ′′) → πnG(S ′) → πnG(S) → πnG(S ′′) →
· · ·

• contravariant functoriality for flat maps

• covariant functoriality for proper maps fo fi-

nite cohomological dimension
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K-theory of perfect complexes

• Contravariant functoriality

• Theorem (Poincaré duality) K(S) ' G(S)

when the stack S is smooth

• Theorem If every coherent sheaf is the quo-

tient of a vector bundle, then K(S) ' Knaive(S).

Examples

• Projective space bundle formula

• Chern classes and Higher Chern classes
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Proof of Poincaré duality

• S smooth implies every finitely presented OS-
module has finite tor dimension.

• suffices to show: every pseudo-coherent com-

plex E• with bounded cohomology is perfect

Since this local on Ssmt, the same proof as for

schemes (due to Thomason-Trobaugh) works.

Here is an outline:

U → S in Ssmt with U affine. Consider E•
|U .

There exist N and K so that Ei = 0, i > N ,

Hn(E•
|U) = 0, n ≤ K.

Zn(E•
|U) = ker(dn) = Im(dn−1) = Bn−1(E•

U)

and
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En−2
|U → En−1

U → Zn(E•
U) → 0 is exact, n ≤ K.

Hence Zn(E•
|U) is finitely presented.

Suppose the stalk of ZK(E•
|U) at u has tor di-

mension p. Using 0 → Zn−1(E•
|U) → En−1

|U →
Zn(E•

|U) → 0,

Tori(Z
n(E•

|U , M))u
∼= Tori−1(Z

n−1(E•
|U), M)u for

all OS-modules M .

Hence ZK−p(E•
|U) is flat and finitely presented

over OS,u, hence free. So ZK−p(E•
|U) is free

over some smaller V → U and

0 → ZK−p(E•
|U) → E

K−p
|U → · · · → EN → 0

is strictly perfect over V . But this is τ≥K−p−1(E
•
|U) '

E•
|U . So E• is perfect.�
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Proof of the second theorem

(∗) Given any pseudo-coherent complex F • and
a map p : P • → F •, with P • a bounded above
complex of vector bundles, there exists a bounded
above complex of vector bundles Q•, and maps
p′ : P • → Q•, q : Q• → F • so that p = q ◦ p′ and
q is a quasi-isomorphism.

• Need to show that if F • is perfect and P • is
a bounded complex of vector bundles, then Q•

can be chosen to be a bounded complex.

• Can assume F • is bounded.

• Let Q• be as in (*). It is perfect and let
K be so that Hn(Q•) = 0, Fn = 0, n ≤ K.
We will show Bp(Q•) is a vector bundle for
some p << 0 so that τ≥p(Q

•) is a bounded
complex of vector bundles. Clearly P • → Q• →
τ≥p(Q

•) → τ≥p(F
•) = F •.
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• Assume BK−1(Q•) is has finite tor dimension

N . Then 0 → Bn−1(Q•) → Qn → Bn(Q•) →
0, n ≤ K, shows by argument using Tor that

BK−N(Q•) is flat. Now the proof follows from

the argument above.

• Proof that BK−1(Q•) is of finite tor dimen-

sion:

Consider α : σ≥K(Q•)(= 0 → QK → QK+1 →
· · · ) → Q•. Then Cone(α)[−1] is perfect since

Q• and σ≥K(Q•) are perfect.But Hi(Cone(α)[−1]) =

0 for i 6= K and = Im(dK−1) if i = K. So

Imd(dK−1) = BK−1(Q•) is of finite tor dimen-

sion. �
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Examples

• On a quotient stack [X/G], X G-quasi-projective,

every coherent sheaf is the quotient of a vector

bundle

• Converse (Theorem of Edidin, Hassett, Kresch

and Vistoli): If on a Deligne-Mumford stack S
, every coherent sheaf is the quotient of a vec-

tor bundle, then it is a quotient stack.
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