K-Theory and G-Theory of Algebraic Stacks

Outline

• The lax-functor approach to stacks and algebraic stacks

• Review: the smooth site, \mathcal{O}_{S} -modules, quasi-coherent \mathcal{O}_{S} -modules, coherent \mathcal{O}_{S} -modules and vector bundles

• Waldhausen categories and their K-theory

• Examples: G-theory and K-theory of algebraic stacks (definitions)

 Basic results on G-theory and K-theory of algebraic stacks

The lax-functor approach to stacks and algebraic stacks

• $(schms/S) \subseteq (alg.spaces/S) \subseteq (spaces/S)$

 $\subseteq (functors : (schms/S)^{op} \rightarrow (sets))$

• $(schms/S) \subseteq (alg.stacks/S) \subseteq (stacks/S)$

 $\subseteq (lax - functors : (schms/S)^{op} \rightarrow (groupoids))$

Example: The stack of smooth curves of genus *g*

Review: the smooth site, $\mathcal{O}_{\mathcal{S}}$ -modules, quasicoherent $\mathcal{O}_{\mathcal{S}}$ -modules, etc.

- Definition: the smooth site of a given algebraic stack
- \bullet $\mathcal{O}_{\mathcal{S}}\text{-}modules, quasi-coherent, coherent <math display="inline">\mathcal{O}_{\mathcal{S}}\text{-}modules$ and vector bundles
- Quasi-coherent vs. $\mathcal{O}_{\mathcal{S}}\text{-modules}$

Waldhausen categories: review

- Categories with cofibrations
- Categories with cofibrations and weak-equivalences
- Functor of Waldhausen categories
- K-theory of Waldhausen categories
- K-theory of exact categories
- The Gillet-Waldhausen theorem: $K(\mathcal{E}) \simeq K(C_b(\mathcal{E}))$

The Waldhuasen approximation Theorem

Given $F: \mathcal{C}' \to \mathcal{C}$ a functor of Waldhausen categories so that

i) F(f) is weak-equivalence in C if and only if f is a weak-equivalence in C' and

ii) any map $x : F(C') \to C$ in C factors as $x' \circ F(c')$ where $c' : C' \to C''$ in C' and $x' : F(C'') \to C$ is a weak-equivalence in C.

Then K(F) : $K(\mathcal{C}') \simeq K(\mathcal{C})$ is a homotopy equivalence.

Examples of Waldhausen categories (for algebraic stacks)

- G-theory: the K-theory of the category of coherent sheaves, other interpretations (G(S))
- The K-theory of vector bundles $(K_{naive}(S))$
- K-theory: the K-theory of perfect complexes (K(S))

G-theory:basic properties

• Localization theorem $S' \subseteq S$ closed with S'' = S - S'. Then $G(S') \to G(S) \to G(S'')$ is a fibration sequence and hence one has the long exact sequence:

$$\cdots \to \pi_{n+1}G(\mathcal{S}'') \to \pi_nG(\mathcal{S}') \to \pi_nG(\mathcal{S}) \to \pi_nG(\mathcal{S}'') \to \cdots$$

- contravariant functoriality for flat maps
- covariant functoriality for proper maps fo finite cohomological dimension

K-theory of perfect complexes

• Contravariant functoriality

• Theorem (Poincaré duality) $K(S) \simeq G(S)$ when the stack S is smooth

• **Theorem** If every coherent sheaf is the quotient of a vector bundle, then $K(S) \simeq K_{naive}(S)$.

Examples

- Projective space bundle formula
- Chern classes and Higher Chern classes

Proof of Poincaré duality

 $\bullet~\mathcal{S}$ smooth implies every finitely presented $\mathcal{O}_{\mathcal{S}}\text{-}$ module has finite tor dimension.

• suffices to show: every pseudo-coherent complex E^{\bullet} with bounded cohomology is perfect

Since this local on S_{smt} , the same proof as for schemes (due to Thomason-Trobaugh) works. Here is an outline:

 $U \to \mathcal{S}$ in \mathcal{S}_{smt} with U affine. Consider $E^{\bullet}_{|U}$.

There exist N and K so that $E^i = 0$, i > N, $\mathcal{H}^n(E^{\bullet}_{|U}) = 0$, $n \leq K$.

 $Z^{n}(E^{\bullet}_{|U}) = ker(d^{n}) = Im(d^{n-1}) = B^{n-1}(E^{\bullet}_{U})$ and

 $E_{|U}^{n-2} \to E_{U}^{n-1} \to Z^{n}(E_{U}^{\bullet}) \to 0$ is exact, $n \leq K$. Hence $Z^{n}(E_{|U}^{\bullet})$ is finitely presented.

Suppose the stalk of $Z^{K}(E^{\bullet}_{|U})$ at u has tor dimension p. Using $0 \to Z^{n-1}(E^{\bullet}_{|U}) \to E^{n-1}_{|U} \to Z^{n}(E^{\bullet}_{|U}) \to 0$,

 $Tor_i(Z^n(E^{\bullet}_{|U}, M))_u \cong Tor_{i-1}(Z^{n-1}(E^{\bullet}_{|U}), M)_u$ for all $\mathcal{O}_{\mathcal{S}}$ -modules M.

Hence $Z^{K-p}(E^{\bullet}_{|U})$ is *flat* and finitely presented over $\mathcal{O}_{S,u}$, hence *free*. So $Z^{K-p}(E^{\bullet}_{|U})$ is free over some smaller $V \to U$ and

$$0 \to Z^{K-p}(E^{\bullet}_{|U}) \to E^{K-p}_{|U} \to \cdots \to E^N \to 0$$

is strictly perfect over V. But this is $\tau_{\geq K-p-1}(E^{\bullet}_{|U}) \simeq E^{\bullet}_{|U}$. So E^{\bullet} is perfect.

Proof of the second theorem

(*) Given any pseudo-coherent complex F^{\bullet} and a map $p: P^{\bullet} \to F^{\bullet}$, with P^{\bullet} a bounded above complex of vector bundles, there exists a bounded above complex of vector bundles Q^{\bullet} , and maps $p': P^{\bullet} \to Q^{\bullet}$, $q: Q^{\bullet} \to F^{\bullet}$ so that $p = q \circ p'$ and q is a quasi-isomorphism.

• Need to show that if F^{\bullet} is perfect and P^{\bullet} is a bounded complex of vector bundles, then Q^{\bullet} can be chosen to be a bounded complex.

• Can assume F^{\bullet} is bounded.

• Let Q^{\bullet} be as in (*). It is perfect and let K be so that $\mathcal{H}^n(Q^{\bullet}) = 0$, $F^n = 0$, $n \leq K$. We will show $B^p(Q^{\bullet})$ is a vector bundle for some p << 0 so that $\tau_{\geq p}(Q^{\bullet})$ is a bounded complex of vector bundles. Clearly $P^{\bullet} \to Q^{\bullet} \to$ $\tau_{\geq p}(Q^{\bullet}) \to \tau_{\geq p}(F^{\bullet}) = F^{\bullet}$. • Assume $B^{K-1}(Q^{\bullet})$ is has finite tor dimension N. Then $0 \to B^{n-1}(Q^{\bullet}) \to Q^n \to B^n(Q^{\bullet}) \to 0$, $n \leq K$, shows by argument using Tor that $B^{K-N}(Q^{\bullet})$ is flat. Now the proof follows from the argument above.

• Proof that $B^{K-1}(Q^{\bullet})$ is of finite tor dimension:

Consider $\alpha : \sigma_{\geq K}(Q^{\bullet})(= 0 \rightarrow Q^{K} \rightarrow Q^{K+1} \rightarrow \cdots) \rightarrow Q^{\bullet}$. Then $Cone(\alpha)[-1]$ is perfect since Q^{\bullet} and $\sigma_{\geq K}(Q^{\bullet})$ are perfect. But $\mathcal{H}^{i}(Cone(\alpha)[-1]) = 0$ for $i \neq K$ and $= Im(d^{K-1})$ if i = K. So $Imd(d^{K-1}) = B^{K-1}(Q^{\bullet})$ is of finite tor dimension. \Box

Examples

• On a quotient stack [X/G], X G-quasi-projective, every coherent sheaf is the quotient of a vector bundle

 \bullet Converse (Theorem of Edidin, Hassett, Kresch and Vistoli): If on a Deligne-Mumford stack ${\cal S}$, every coherent sheaf is the quotient of a vector bundle, then it is a quotient stack.