K-Theory and G-T heory
of Algebraic Stacks



Outline

e [ he lax-functor approach to stacks and al-
gebraic stacks

e Review: the smooth site, Og-modules, quasi-
coherent Og-modules, coherent Og-modules and
vector bundles

e \Waldhausen categories and their K-theory

e Examples: G-theory and K-theory of alge-
braic stacks (definitions)

e Basic results on G-theory and K-theory of
algebraic stacks



T he lax-functor approach to stacks and al-
gebraic stacks

e (schms/S) C (alg.spaces/S) C (spaces/S)

C (functors : (schms/S)°P — (sets))

e (schms/S) C (alg.stacks/S) C (stacks/S)

C (lax — functors : (schms/S)°P — (groupoids))

Example: The stack of smooth curves of genus
g



Review: the smooth site, Os-modules, quasi-
coherent Og-modules, etc.

e Definition: the smooth site of a given alge-
braic stack

e Og-modules, quasi-coherent, coherent Og-
modules and vector bundles

e Quasi-coherent vs. Og-modules



Waldhausen categories: review

e Categories with cofibrations

e Categories with cofibrations and weak-equivalences

e Functor of Waldhausen categories

o K-theory of Waldhausen categories

e K-theory of exact categories

e The Gillet-Waldhausen theorem: K(&) ~ K(Cy(£))



The Waldhuasen approximation Theorem

Given F : C' — C a functor of Waldhausen cat-
egories so that

i) F'(f) is weak-equivalence in C if and only if
f is a weak-equivalence in C’ and

i) any map z : F(C") — C in C factors as z’ o
F(d)whered :C"— C"inC' and 2’ : F(C") —
C' is a weak-equivalence in C.

Then K(F) : K(C') ~ K(C) is a homotopy
equivalence.



Examples of Waldhausen categories (for
algebraic stacks)

e G-theory: the K-theory of the category of
coherent sheaves, other interpretations (G(S))

e The K-theory of vector bundles (K,,4ive(S))

e K-theory: the K-theory of perfect complexes

(K(S5))



G-theory:basic properties

e L ocalization theorem S’ C S closed with §" =
S—8". Then G(8') — G(S) — G(S8") is a fi-
bration sequence and hence one has the long
exact sequence:

- = T 1G(S") - T G(S) — mG(S) — mG(S") —

e contravariant functoriality for flat maps

e covariant functoriality for proper maps fo fi-
nite cohomological dimension



K-theory of perfect complexes

e Contravariant functoriality

e Theorem (Poincaré duality) K(S) ~ G(S)
when the stack § is smooth

e T heorem If every coherent sheaf is the quo-
tient of a vector bundle, then K(S) ~ K,,4ive(S).

Examples

e Projective space bundle formula

e Chern classes and Higher Chern classes



Proof of Poincaré duality

e S smooth implies every finitely presented Og-
module has finite tor dimension.

e suffices to show: every pseudo-coherent com-
plex E® with bounded cohomology is perfect

Since this local on S4,¢, the same proof as for
schemes (due to Thomason-Trobaugh) works.
Here is an outline:

U— S in Sy With U affine. Consider E|‘U.

There exist N and K so that E* = 0, ¢ > N,
H”(ErU) =0, n<K.

Z”(ErU) = ker(d?) = Im(d" 1) = B”_l(E['J)
and
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E|"—2 — Er1 — Z7(Ep) — 0 is exact, n < K.
Hence Z”(E 7)) is finitely presented.

Suppose the stalk of ZK(E ) at u has tor di-

n—1

mension p. Using 0 — Z"~ 1(E ) — E

Z”(E ) — 0,

Tory(Z™(Efy;, M))u = Tor;—1 (2"~ 1(E ), M)y, for
all Og-modules M.

Hence Z&— P(Ef,) is flat and finitely presented

over Og . hence free. So ZK— p(E 7)) is free
over some smaller V. — U and

0— zZK- p(E )—>E‘ . — EN =0

is strictly perfect over V. Butthisisr>g_,,_ 1(E ) ~

|U So E°® is perfect.ll
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Proof of the second theorem

(%) Given any pseudo-coherent complex F'® and

a map p . P®* — F*, with P®* a bounded above
complex of vector bundles, there exists a bounded
above complex of vector bundles Q°®, and maps
i P*— Q% q:Q*— F*® so that p=qop and

q IS a quasi-isomorphism.

e Need to show that if F'® is perfect and P°® is
a bounded complex of vector bundles, then Q°
can be chosen to be a bounded complex.

e Can assume F'® is bounded.

e Let Q°® be as in (*). It is perfect and let
K be so that H*(Q®) = 0, F* = 0, n < K.
We will show BP(Q®) is a vector bundle for
some p << 0 so that 7>,(Q°®) is a bounded
complex of vector bundles. Clearly P®* — Q°® —
TZp(Q.) — TZp(F.> = F°.
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e Assume BX~1(Q®) is has finite tor dimension
N. Then 0 — B"1(Q®) - Q" — B™"(Q®) —
0, n < K, shows by argument using Tor that
BE=N(@Q*) is flat. Now the proof follows from
the argument above.

e Proof that BE—1(Q®) is of finite tor dimen-
sion:

Consider a : o> (Q*)(= 0 — QF — Q&Tl -

.+-) — Q°®. Then Cone(a)[—1] is perfect since

Q® and o> (Q°®) are perfect.But H'(Cone(a)[—1]) =
0 for i # K and = Im(d®~1) if i = K. So
Imd(d®—1) = BE-1(Q®) is of finite tor dimen-
sion. L]
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Examples

e On a quotient stack [X/G], X G-quasi-projective,
every coherent sheaf is the quotient of a vector
bundle

e Converse (Theorem of Edidin, Hassett, Kresch
and Vistoli): If on a Deligne-Mumford stack S
, every coherent sheaf is the quotient of a vec-
tor bundle, then it is a quotient stack.
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