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Abstract

We show, by an explicit construction of the relevant Chow-Kunneth projectors, that if X is the
quotient of a smooth projective variety by a finite group action and Y is obtained from X by blowing
up a finite set of points, then (under appropriate hypotheses) each of Murre’s conjectures holds for
Y if and only if it holds for X. The novelty of our approach is that, finite dimensionality of the
corresponding motives is never used or needed and that our construction explicitly provides the Chow-
Kunneth projectors for X in terms of the Chow-Kunneth projectors for Y and vice-versa. This is
applied to two classes of examples: one where the group action is trivial and the other to Kummer
manifolds over algebraically closed fields of characteristic different from 2, which are obtained by
blowing up the corresponding Kummer varieties along the 2-torsion points. In particular, our results
imply that the Kummer manifolds satisfy part of Murre’s vanishing conjecture (B) in all dimensions
and the full vanishing conjecture in dimensions 3 and 4.

1 Introduction

Among the many deep conjectures about motives are Murre’s conjectures, first enunciated in [MU] (see
Section 1.1 for a full statement). These conjectures are equivalent to the Bloch-Beilinson conjectures and
have only been established for certain classes of varieties – among them curves, surfaces, the product of
a curve and a surface, abelian varieties of dimension at most 4 [MU], and a handful of other cases (see
for example, [GM], [KIM], [VI]).

The work in this article was motivated by a desire to study Murre’s conjectures for blow-ups, partic-
ularly in the context of our prior work (see [AJ]) where we provided an explicit construction of Chow-
Kunneth projectors for quotients of Abelian varieties by finite groups. In particular, our approach is
constructive, providing explicitly a construction of the Chow-Kunneth projectors for the blow-up in
∗The second author was supported by a grant from the NSF.
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terms of the Chow-Kunneth projectors for the original variety and never requiring or invoking finite di-
mensionality of the motives of the corresponding varieties. A discussion on Murre’s conjectures appears
in section 2 of the paper.

Our main result is the following theorem:

Theorem 1.1. Suppose X ′ is a smooth variety of dimension d > 0 over a field k and G a finite group
acting on X ′. Let X = X ′/G denote the quotient variety and qX : X ′ → X the quotient map. Let T ⊆ X
be a finite set of k-rational points and f : Y → X the blow-up of X along T . Suppose

• The morphism f is induced by a morphism of smooth varieties, i.e. Y = Y ′/G for some smooth
variety Y ′ and there is some morphism f ′ : Y ′ → X ′ such that qX ◦ f ′ = f ◦ qY , where qY : Y ′ → Y

is the obvious map.

• Each component of the exceptional divisor of the blow-up f : Y → X is isomorphic to Pd−1.

Then Y has a Chow-Künneth decomposition if and only if X has a Chow-Künneth decomposition,
where the Chow-Kunneth decomposition for Y and X are related by (2.2.2) and Corollary 2.10. Further-
more, the Chow-Künneth decomposition for Y satisfies Poincaré duality (respectively, Murre’s conjecture
B, B’, C, D) if and only if that on X does.

A notable application of this theorem is to Kummer manifolds. Given an abelian variety A over an
algebraically closed field of characteristic different from 2, its associated Kummer variety KA can be
described as the quotient of A by the involution a 7→ −a. If A has dimension d > 0, KA has 22d singular
points, which are the images of the 2-torsion points under the quotient map A → KA. Blowing these
points up yields a smooth variety K ′A which we call the associated Kummer manifold.

Corollary 1.2. Let A be an abelian variety of dimension d over an algebraically closed field of charac-
teristic different from 2 and let K ′A be its associated Kummer manifold. Then K ′A has a Chow-Künneth
decomposition satisfying Poincaré duality. The projector ρi acts as zero on CHj

Q(K ′A) for i < j and also
for i > j+ d, i.e. Murre’s conjecture B’ holds for the action of the projectors {ρi|i}. In particular, when
d ≤ 4, ρi acts trivially on CHj

Q(X) for i < j and also for i > 2j so that Murre’s vanishing conjecture B

holds for K ′A.

Here is short outline of the paper. In the rest of this section, we set up the basic framework by
reviewing basic results in this area and establishing the terminology used in the rest of the paper. Section
2 forms the technical heart of the paper, where an explicit Chow-Kunneth decomposition for blow-ups
of (what we call) pseudo-smooth varieties at a finite number of rational points is established.

In section 3, we show that, in the context of section 2.2, each of Murre’s other conjectures holds for
the blown-up variety if and only if it holds for the original variety. In section 4, we consider several
applications. The first application is to so-called Kummer manifolds. The second application is to show
that Murre’s conjectures hold for the variety obtained by blowing up a finite number of k-rational points
on a smooth variety if and only if they hold for the original variety.

2



We also want to point out that the notion of finiteness for motives can be used to predict the
existence of a Chow-Künneth decomposition for Kummer manifolds of dimension 4 or less, satisfying
Murre’s conjectures, B and C. However explicitly constructing such projectors using finite dimensionality
is tedious and of exponential complexity in the dimension of the abelian variety as we showed in [AJ,
section 2]. Therefore, the explicit construction of the Chow-Künneth projectors is often quite useful: see,
for example, [KMP]. In addition, it does not seem likely that finite dimensionality provides a means to
prove Murre’s conjectures B’ in arbitrary dimensions as we have.

Acknowledgements. The present work was prompted by discussions with several colleagues (no-
tably Matt Kerr), who, after seeing our previous work [AJ], raised the question of constructing an explicit
Chow-Künneth decomposition with good properties for Kummer manifolds. We thank them all for rais-
ing this interesting question. We also thank Donu Arapura, Michel Brion, Igor Dolgachev, and Charles
Vial for enlightening discussions.

1.1 Basic framework and terminology: Chow motives for pseudo-smooth varieties

Let k be a field. For convenience, we refer to the quotient of a smooth variety by the action of a finite group
(scheme) as a pseudo-smooth variety. It is shown in [F, Example 16.1.13] that the basic machinery of
intersection theory and the usual formalism for correspondences extends naturally from smooth varieties
to pseudo-smooth varieties, provided one uses rational coefficients. Thus, we may define the category
Mk(Q) of (rational) Chow motives of pseudo-smooth projective varieties in the same way as for smooth
projective varieties (see [F, Chapter 16], [MA], or [SCH]). Throughout this article, we use the notation
CH i(X) for the Chow groups of (an algebraic scheme) X and write CH i

Q(X) = CH i(X)⊗Q. It is worth
noting if a finite group G acts on a smooth variety X, the machinery of equivariant intersection theory
allows us to identify the equivariant Chow groups CH∗G(X)Q with CH∗Q(X/G). Thus, the extension of the
usual formalism of correspondences to pseudo-smooth varieties can also be derived from the analogous
theory in the equivariant context.

Since we will make use of many projection maps in the sequel, we reserve the symbol p for these,
with the superscript indicating the domain and the subscript the range. For example, if k is a field and
X,Y, Z are pseudo-smooth varieties over k, the map

pXY Z
13 : X × Y × Z → X × Z (1.1.1)

is the map (x, y, z) 7→ (x, z). This will be denoted p13 if the choice of X,Y and Z are clear. A subscript
of ∅ indicates the structure morphism; for example, pXY

∅ is the structure morphism X × Y → Spec k.
Given cycles α ∈ CH i(X) and β ∈ CHj(Y ), we refer to their exterior product α × β = pXY

1
∗
α · pXY

2
∗
β

as a product cycle on X × Y of type (i, j); by abuse of terminology, we sometimes also refer to linear
combinations of such elements as product cycles. (These are referred to as degenerate correspondences in
[F].) When γ ∈ CH∗(X × Y ) and δ ∈ CH∗(Y ×Z), we define their composition δ • γ ∈ CH∗(X ×Z) by
the formula

δ • γ = pXY Z
13 ∗(p

XY Z
12

∗
γ · pXY Z

23
∗
δ).
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If s : X × Y → Y × X is the exchange of factors, we define the transpose of α ∈ CH∗(X × Y ) by
αt := s∗(α). We write ∆X for the diagonal in X ×X.

We say that a variety X of dimension d has a Chow-Künneth decomposition if the diagonal class
[∆X ] ∈ CHd

Q(X×X) has a decomposition into mutually orthogonal idempotents, each of which maps onto
the appropriate Künneth component under the cycle map. More precisely, there exist πi ∈ CHd

Q(X×X),
0 ≤ i ≤ 2d, such that:

(i) [∆X ] =
2d∑
i=0

πi;

(ii) πi • πi = πi for all i, and πi • πj = 0 for i 6= j;
(iii) If H∗ is a Weil cohomology theory, then for each i, the image of πi under the cycle map clX :

CHd
Q(X ×X)→ H2d(X ×X; Q) is the (2d− i, i) Künneth component of the diagonal class.

We say that Chow-Künneth decomposition as above satisfies Poincaré duality if π2d−i = πi
t for

0 ≤ i ≤ 2d. A variety X as above has a strong Künneth decomposition if there exist elements λi,j , µi,j ∈

CH i
Q(X), 0 ≤ i ≤ d, such that [∆X ] =

d∑
i=0

∑
j

λi,j × µd−i,j . It is easy to check (cf. [AJ, Prop. 3.4]) that

a strong Künneth decomposition is a Chow-Künneth decomposition.

Murre’s Conjectures

Let X be a pseudo-smooth projective variety. Then
A. X has a Chow-Künneth decomposition.
B. If i < j or i > 2j, then πi acts as 0 on CHj

Q(X).
C. If we define F 0CHj

Q(X) = CHj
Q(X) and F kCHj

Q(X) = Ker π2j+1−k∗|F k−1CHj
Q(X)

for k > 0, then
the resulting filtration is independent of the particular choice of projectors πi.

D. For any filtration as defined in C, F 1CHj
Q(X) is the subgroup of cycles in CHj

Q(X) homologically
equivalent to zero.

We also consider the following property which is weaker than conjecture B:

B’. πi acts as zero on CHj
Q(X) for i < j or for i > j + d, where d = dimk(X).

It has long been known [MA] that when X is a smooth projective variety, T ⊆ X is a nonsingular
subvariety of pure codimension r + 1 > 1, and f : Y → X is the blow-up of X along T , there are
morphisms giving a split exact sequence (cf. [SCH, 2.7]):

0→ h(T )⊗ Lr+1 → h(X)⊕ (h(T )⊗ L)→ h(Y )→ 0

where ⊕ and ⊗ are (respectively) the coproduct and tensor product structures on the category of motives
of smooth projective varieties, and L is the Lefschetz motive. Since the motive of Y is so closely related
to that of X, it is natural to ask how the validity of (any of) Murre’s conjectures on one variety is related
to the same for the other variety.
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Our main result (see Theorem 1.1) shows that if T is finite and X is pseudo-smooth, then, under
appropriate hypotheses, this is indeed the case. The proof is somewhat technical, although it is not
difficult to sketch the key ideas. Letting d = dimX = dimY , observe that the Q-vector space CHd

Q(Y ×Y )
is a (noncommutative) ring under composition of correspondences. We show first that there is a direct sum
decomposition CHd

Q(Y ×Y ) ∼= A⊕B, where A = (f×f)∗CHd
Q(X×X) and B consists of cycles supported

on E×Y ∪Y ×E, and moreover that A and B are “orthogonal”, in the sense that α•β = β •α = 0 when
α ∈ A, β ∈ B. Using this decomposition, we can show, starting from a Chow-Künneth decomposition
for X, how to construct one on Y and vice versa. Each of the Chow-Künneth projectors in Y will have
one component in A and another in B: the former is easy to construct, but the latter takes some work
and relies on the hypothesis that the exceptional divisor has a strong Künneth decomposition. The next
step is to prove that for i = 0, . . . , d, there is an analogous decomposition CH i

Q(Y ) ∼= Ai ⊕ Bi such
that correspondences in A act trivially on Bi and correspondences in B act trivially on Ai. The result
on the other parts of Murre’s conjectures then follows with little difficulty. We note that Vial [VI] has
also studied the motive of a blow-up (when X is smooth), but from a different perspective. For further
discussion of motives, we refer the reader to [MA] and [SCH].

2 An explicit Chow-Künneth decompositions for blow-ups

2.1 Intersection theory on pseudo-smooth varieties

As described in [F, Example 16.1.13], one can define pullback maps, pushforward maps, and intersection
products for pseudo-smooth varieties, and many basic results (including in particular the projection
formula) carry over from the smooth case into this setting. It is somewhat less clear that certain other
properties which we will need – in particular, the exchange of pushforwards and pullbacks in Cartesian
squares – extend to the pseudo-smooth situation; so in the interest of completeness of exposition we
provide a complete proof.

In the following, when a group G acts on a quasi-projective variety V ′ (over some field), we denote by
gV ′ : V ′ → V ′ the map describing the action of g ∈ G on V . Furthermore, we let V denote the quotient
V ′/G and qV : V ′ → V the quotient map. If G is a finite group acting on smooth projective varieties
V ′ and W ′ and V = V ′/G, W = W ′/G, we say that a morphism f : V → W is induced by a morphism
f ′ : V ′ → W ′ if qW ◦ f ′ = f ◦ qV . We will need a technical result; for smooth varieties (i.e. when G is
trivial), this is a well-known property of the Gysin morphism:

Lemma 2.1. Let G be a finite group acting on smooth projective varieties V ′ and W ′ of dimension d over
some field; let V = V ′/G, W = W ′/G, and let f : V →W be a morphism induced by some f ′ : V ′ →W ′.
Then

pV V V
13 ∗(f × 1× f)∗ = (f × f)∗pWV W

13 ∗.

Proof. We wish to show that the diagram below commutes:
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CH∗Q(V × V × V )
pV V V
13 ∗ // CH∗−d

Q (V × V )

CH∗Q(W × V ×W )

(f×1×f)∗

OO

pWV W
13 ∗ // CH∗−d

Q (W ×W )

(f×f)∗

OO

The G-actions on V ′ and W ′ naturally induce actions of G×G on V ′ × V ′ and W ′ ×W ′ and actions
of G×G×G on V ′ × V ′ × V ′ and W ′ × V ′ ×W ′. Moreover, by [F, 8.3], there is an isomorphism q∗V×V :

CH∗Q(V × V )→ CH∗Q(V ′ × V ′)G×G with inverse
1
|G|

qV×V ∗, and similarly for the other product varieties

mentioned above. We also note that our hypotheses imply that the various pullback and pushforward
maps are compatible with the above isomorphism: for example, there is a commutative diagram:

CH∗Q(V × V )
q∗V×V

∼=
// CH∗Q(V ′ × V ′)G×G

CH∗Q(W ×W )

(f×f)∗

OO

q∗W×W

∼=
// CH∗Q(W ′ ×W ′)G×G

(f ′×f ′)∗

OO

Applying this reasoning multiple times, we deduce that there is a cube

CH∗Q(V × V × V )
pV V V
13 ∗ //

∼=

''NNNNNNNNNNNNNNNNNNNNNNNNN
CH∗−d

Q (V × V )

∼=

%%KKKKKKKKKKKKKKKKKKKKK

CH∗Q(V ′ × V ′ × V ′)G×G×G

pV V V
13 ∗

// CH∗−d
Q (V ′ × V ′)G×G

CH∗Q(W × V ×W )

(f×1×f)∗

OO

pWV W
13 ∗ //

∼=

''NNNNNNNNNNNNNNNNNNNNNNNNN
CH∗−d

Q (W ×W )

(f×f)∗

OO

∼=

%%KKKKKKKKKKKKKKKKKKKKK

CH∗Q(W ′ × V ′ ×W ′)G×G×G

(f ′×1×f ′)∗

OO

pWV W
13 ∗ // CH∗−d

Q (W ′ ×W ′)G×G

(f ′×f ′)∗

OO

in which the diagonal maps are the various isomorphisms induced via pulling back by the corresponding
quotient morphisms. The two side faces and the top and bottom commute by the reasoning described
above. Note that all of the varieties appearing on the front face are smooth. Moreover, since any
morphism between smooth projective varieties is a local complete intersection morphism in the sense of
[F, p. 439], commutativity of the front face follows from [F, Prop. 6.6(c)]. Finally, the diagonal maps are
all isomorphisms; so an elementary diagram chase allows us to deduce that the rear face commutes.

We proceed by studying how composition of correspondences behaves under pullback.
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Proposition 2.2. Suppose G is a finite group acting on smooth projective varieties V ′ and W ′, both of
dimension d over a field k, and let V = V ′/G, W = W ′/G. Suppose f : V →W is an induced morphism
of degree m. For α, β ∈ CHd(W ×W ),

(f × f)∗(α) • (f × f)∗(β) = m(f × f)∗(α • β).

Proof.

(f × f)∗α • (f × f)∗β = pV V V
13 ∗(p

V V V
12

∗
(f × f)∗β · pV V V

23
∗
(f × f)∗α)

= pV V V
13 ∗((f × f × f)∗pWWW

12
∗
β · (f × f × f)∗pWWW

23
∗
α)

= pV V V
13 ∗(f × f × f)∗(pWWW

12
∗
β · pWWW

23
∗
α)

= pV V V
13 ∗(f × 1× f)∗(1× f × 1)∗(pWWW

12
∗
β · pWWW

23
∗
α)

= (f × f)∗pWV W
13 ∗(1× f × 1)∗(pWWW

12
∗
β · pWWW

23
∗
α)

= (f × f)∗pWWW
13 ∗(1× f × 1)∗(1× f × 1)∗(pWWW

12
∗
β · pWWW

23
∗
α)

= m(f × f)∗pWWW
13 ∗(p

WWW
12

∗
β · pWWW

23
∗
α)

= m(f × f)∗(α • β).

(2.1.1)

where the fifth equality is obtained by invoking Lemma 2.1.

Corollary 2.3. With hypotheses as in Proposition 2.2, suppose furthermore that f is a birational
morphism. If α ∈ CHd(W × W ) is an idempotent (for the operation •), then so is (f × f)∗α. If
α, β ∈ CHd(W ×W ) and α • β = 0, then (f × f)∗(α) • (f × f)∗(β) = 0.

The following fact about product cycles is surely well known; we include a proof in the interest of
completeness of exposition.

Lemma 2.4. Let V be a pseudo-smooth irreducible projective variety of dimension d over some field k.
Suppose α ∈ CH i(V ), β ∈ CHd−i(V ), γ ∈ CHj(V ), δ ∈ CHd−j(V ). Then

(α× β) • (γ × δ) = (γ × β) · pV V
∅
∗
pV
∅ ∗(δ · α).

If i 6= j, then (α× β) • (γ × δ) = 0.
If i = j, then (α× β) • (γ × δ) = m(γ × β) for some m ∈ Z.

Proof.

(α× β) • (γ × δ) = pV V V
13 ∗(p

V V V
12

∗
(pV V

1
∗
γ · pV V

2
∗
δ) · pV V V

23
∗
(pV V

1
∗
α · pV V

2
∗
β))

= pV V V
13 ∗(p

V V V
13

∗
pV V
1
∗
γ · pV V V

2
∗
δ · pV V V

2
∗
α · pV V V

13
∗
pV V
2
∗
β)

= pV V V
13 ∗(p

V V V
13

∗
(pV V

1
∗
γ · pV V

2
∗
β) · pV V V

2
∗
δ · pV V V

2
∗
α)

= pV V
1
∗
γ · pV V

2
∗
β · pV V V

13 ∗p
V V V
2

∗
(δ · α)

= pV V
1
∗
γ · pV V

2
∗
β · pV V

∅
∗
pV
∅ ∗(δ · α)

= (γ × β) · pV V
∅
∗
pV
∅ ∗(δ · α).
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If i 6= j, pV
∅ ∗(δ · α) ∈ CH i−j(Spec k) = 0. If i = j, pV V

∅
∗
pV
∅ ∗(δ · α) ∈ CH0(V × V ) ∼= Z.

2.2 The main construction

The objective of this section is to describe, more or less explicitly, how (under the appropriate hypotheses)
a Chow-Künneth decomposition for a pseudo-smooth projective variety can be used to construct one on
the blow-up of this variety along a point, and conversely.

We begin by setting up the framework for our construction and proving some auxiliary results. Let
X ′ be a smooth projective variety of dimension d > 0 over a field k, G a finite group acting on X ′ and
X = X ′/G. Let a be some k-rational point of X, T = {a}, and f : Y → X the blow-up of X along T .

Suppose further the following hypotheses are satisfied:

(i) The morphism f : Y → X is induced by some morphism of smooth varieties.

(ii) The exceptional divisor Z of the blow-up is isomorphic to Pd−1.

Implicit in (i) is the assumption that Y is the quotient of a smooth variety by some action of G; in
particular, Y is itself pseudo-smooth.

Now Y × Y is the blow-up of X ×X along the closed subvariety S = S1 ∪S2, where S1 = T ×X and
S2 = X ×T ; the exceptional divisor of this blow-up is E = E1 ∪E2, where E1 = Z ×Y and E2 = Y ×Z.
Thus we have commutative diagrams:

E
j̃ //

g̃

��

Y × Y

f×f

��
S

ĩ // X ×X
and

E1
� � j×1 //

g×1

��

Y × Y

f×f

��

E2
� � 1×j //

1×g

��

Y × Y

f×f

��
S1

� � i×1 // X ×X S2
� � 1×i // X ×X

Note that even when X is smooth we cannot use the blow-up exact sequence to relate the Chow
groups of Y × Y to those of X × X, because S is not regularly imbedded in X × X. Instead, we use
localization; letting UX = X ×X − S and UY = Y × Y −E, there is a commutative diagram with exact
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rows:

CHd−1
Q (E)

j̃∗ //

g̃∗

��

CHd
Q(Y × Y ) //

(f×f)∗

��

CHd
Q(UY )

∼=

��

// 0

CH0
Q(S) ĩ∗ // CHd

Q(X ×X) // CHd
Q(UX) // 0

(2.2.1)

Let i1 : S1 ↪→ S, i2 : S2 ↪→ S, i′1 : S1 ∩ S2 ↪→ S1, and i′2 : S1 ∩ S2 ↪→ S2 denote the various inclusion
maps. Then, noting that S1 ∩ S2 = T × T has dimension 0, we have an exact sequence (see [F, Example
1.3.1 (c)]:

CH−d
Q (S1 ∩ S2)

(i′1∗,i
′
2∗)−→ CH0

Q(S1)⊕ CH0
Q(S2)

i1∗−i2∗−→ CH0
Q(S)→ 0,

Now d > 0, making the the first term of the sequence 0; so, there is an isomorphism
t : CH0

Q(S1) ⊕ CH0
Q(S2)

∼=→ CH0
Q(S). Now CH0

Q(S1) ∼= Q is generated by [S1] and CH0
Q(S2) ∼= Q is

generated by [S2]. Hence, for v, w ∈ Q we have (̃i∗ ◦ t)(v[S1], w[S2]) = v[S1] + w[S2], where on the right
we interpret the terms [Si] as cycles on X.

Since a is a k-rational point, the inclusion map i : {a} = T ↪→ X may be identified with a section of
the structure morphism X → Spec k; thus, both maps (i× 1)∗ and (1× i)∗ are (split) injective.

Lemma 2.5. The map ĩ∗ in (2.2.1) is injective.

Proof. It suffices to show that u = ĩ∗ ◦ t is injective. To this end, suppose u(v[S1],−w[S2]) = 0. Then
v[S1] = w[S2] on X, and so v[S1] • [S1] = w[S1] • [S2]. Note that [S1] = T × [X] is a product cycle (on
X×X) of type (0, d) and [S2] = [X]×T is a product cycle of type (d, 0). Direct calculation using Lemma
2.4 shows that [S1] • [S1] = [S1] and [S1] • [S2] = 0. Hence v[S1] = 0; that is, v(i× 1)∗[S1] = 0. Because
(i× 1)∗ is injective, it follows that v = 0. Hence w[S2] = w(1× i)∗[S2] = 0, and by injectivity of (1× i)∗
we have w = 0 also.

Define subgroups A = (f × f)∗CHd
Q(X ×X) and B = j̃∗(Ker g̃∗) of CHd

Q(Y × Y ). The next result
gives an “orthogonality principle” which is central to our construction.

Proposition 2.6. If α ∈ A and β ∈ B, then α • β = β • α = 0.

Proof. For α ∈ A and β ∈ B, write α = (f × f)∗δ and β = j̃∗ε where δ ∈ CHd
Q(X × X) and ε ∈

CHd−1
Q (E). As before, we may write ε = h1∗(ε1) + h2∗(ε2), where εi ∈ CHd−1

Q (Ei), i = 1, 2. Thus
β = (j × 1)∗ε1 + (1 × j)∗ε2. Now it is easy to check that CH0(S) ∼= CH0(S1) ⊕ CH0(S2) ∼= Z ⊕ Z and
that g̃(ε) = ((g × 1)∗ε1, (1× g)∗ε2). Since g̃(ε) = 0, it follows that (g × 1)∗ε1 = 0 and (1× g)∗ε2 = 0.

Hence
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α • (1× j)∗ε2 = pY Y Y
13 ∗(p

Y Y Y
12

∗
(1× j)∗ε2 · p

Y Y Y
23

∗
(f × f)∗δ)

= pY Y Y
13 ∗((1× j × 1)∗pY ZY

12
∗
ε2 · (f × f × f)∗pXXX

23
∗
δ)

= pY Y Y
13 ∗(1× j × 1)∗(pY ZY

12
∗
ε2 · (1× j × 1)∗(f × f × f)∗pXXX

23
∗
δ).

To obtain the last equality above, we have used the projection formula. Now the last term equals:

pY ZY
13 ∗(p

Y ZY
12

∗
ε2 · (1× (f ◦ j)× 1)∗(f × 1× f)∗pXXX

23
∗
δ)

= pY ZY
13 ∗(p

Y ZY
12

∗
ε2 · (1× (i ◦ g)× 1)∗(f × 1× f)∗pXXX

23
∗
δ)

= pY XY
13 ∗(1× (i ◦ g)× 1)∗(pY ZY

12
∗
ε2 · (1× (i ◦ g)× 1)∗(f × 1× f)∗pXXX

23
∗
δ)

= pY XY
13 ∗((1× (i ◦ g)× 1)∗pY ZY

12
∗
ε2 · (f × 1× f)∗pXXX

23
∗
δ)

= pY XY
13 ∗(p

Y XY
12

∗
(1× i)∗(1× g)∗ε2 · (f × 1× f)∗pXXX

23
∗
δ)

= 0.

A similar computation shows (1× j)∗ε2 • α = 0.
Now αt ∈ A also, and since (g × 1)∗ε1 = 0 , we have (1 × g)∗εt1 = 0. Thus, α • (j × 1)∗ε1 =

((α • (j × 1)∗ε1)t)t = ((1× j)∗εt1 • αt)t = 0 and similarly (j × 1)∗ε1 • α = 0.

We will need a basic result about noncommutative rings.

Lemma 2.7. Let R be a noncommutative ring with 1. Suppose I and J are subgroups of the additive
group of R such that I + J = R, and that I and J are mutually orthogonal, i.e. for all i ∈ I and j ∈ J ,
ij = ji = 0. Then R is the internal direct sum of I and J , I and J are two-sided ideals of R, and there
is a ring isomorphism R ∼= I × J .

Proof. The hypothesis I + J = R allows us to write 1 = 1I + 1J for some 1I ∈ I and 1J ∈ J . Now if
x ∈ I ∩ J , then x = x · 1 = x1I + x1J . By the orthogonality hypothesis, x1I and x1J are both 0; hence
x = 0 and so R is the internal direct sum of (the abelian groups) I and J .

Next, observe that if i ∈ I, then i1I = i(1− 1J) = i · 1− i · 1J = i · 1 = i (by orthogonality); so 1I is a
right identity for multiplication on I. Similar arguments show that 1I is a left identity and that 1J is a
two-sided identity for multiplication on J . Next, we claim that I is closed under multiplication: indeed,
if i1, i2 ∈ I and i1i2 = i′ + j′ where i′ ∈ I, j′ ∈ J , then i′ + j′ = i1i2 = i1(i21I) = (i1i2)1I = (i′ + j′)1I =
i′1I + j′1I = i′1I = i′. Thus, j′ = 0 and so i1i2 ∈ I. A similar argument shows that J is also closed under
multiplication, and hence that I and J are rings.

Next consider i ∈ I and r ∈ R. Writing r = i′ + j′ with i′ ∈ I, j′ ∈ J , we see that ri = (i′ + j′)i =
i′i + j′i = i′i ∈ A. A similar argument shows ir ∈ A and hence that A is a two-sided ideal; analogous
reasoning shows that B is also a two-sided ideal. Finally, the internal direct sum decomposition yields
a group isomorphism f : I × J → R defined by (i, j) 7→ i + j; the orthogonality hypothesis and the
construction of 1I and 1J easily imply that f is in fact a ring isomorphism.
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Corollary 2.8. There is an isomorphism of rings CHd
Q(Y × Y ) ∼= A × B given explicitly by γ 7→

((f × f)∗(f × f)∗γ, γ − (f × f)∗(f × f)∗γ). Furthermore, A and B are two-sided ideals of CHd
Q(Y × Y ).

Proof. By Lemma 2.7, it suffices to show that for γ ∈ CHd
Q(Y × Y ), (f × f)∗(f × f)∗γ ∈ A and

γ − (f × f)∗(f × f)∗γ ∈ B. The former is obvious from the definition of A. By a chase on the diagram
(2.2.1), it follows that (f×f)∗(f×f)∗(γ)−γ = j̃∗(ε) for some ε ∈ CHd−1

Q (E). Moreover, (f×f)∗j̃∗(ε) = 0;
hence ĩ∗g̃∗(ε) = 0. Since ĩ∗ is injective by Lemma 2.5, it follows that ε ∈ Ker(g̃∗). Thus, j̃∗(ε) ∈ B, as
desired.

We are now in a position to state and prove our main result.

Theorem 2.9. Assume the hypotheses 2.2. If X has a Chow-Künneth decomposition, then Y also has
a Chow-Künneth decomposition. Moreover, if the assumed Chow-Künneth decomposition for X satisfies
Poincaré duality, then so does the Chow-Künneth decomposition for Y .

Proof. Suppose [∆X ] =
∑2d

i=0 πi is a Chow-Künneth decomposition for X; we will show how to construct a
Chow-Künneth decomposition for Y and define σ = [∆Y ]−(f×f)∗[∆X ]. By Corollary 2.3, {(f×f)∗πi}2d

i=0

is a set of orthogonal idempotents in CHd
Q(Y ×Y ) and hence σ is an idempotent element of CHd

Q(Y ×Y ).
Furthermore, by Corollary 2.8,

σ = [∆Y ]− (f × f)∗[∆X ] = [∆Y ]− (f × f)∗(f × f)∗[∆Y ] ∈ B.

Letting h1 : E1 ↪→ E and h2 : E2 ↪→ E denote the inclusion maps, there is a surjection (cf. [F,
Example 1.3.1(c)]):

CHd−1
Q (E1)⊕ CHd−1

Q (E2)
h1∗−h2∗−→ CHd−1

Q (E)

so we may write τ = h1∗τ1 +h2∗τ2, with τi ∈ CHd−1
Q (Ei), i = 1, 2. Since j̃ •h1 = j× 1 and j̃ •h2 = 1× j,

we have σ = (j × 1)∗τ1 + (1× j)∗τ2. (This is the only part of the construction which is not explicit, and
depends on the choices made for τ1 and τ2.)

Now let ` ∈ CH1
Q(Pd−1) be the class of a generic hyperplane. Recall [MA, p.455] that Pd−1 has a

strong Künneth decomposition given by [∆Pd−1 ] =
d−1∑
i=0

`i × `d−i−1.

Keeping in mind our hypothesis Z = Pd−1 and the definitions E1 = Z×Y and E2 = Y ×Z, we define,
for i = 1, . . . , d,

η′i = τ1 • (`i−1 × `d−i) ∈ CHd−1
Q (E1)

and for i = 0, . . . , d− 1,

θ′i = (`d−i−1 × `i) • τ2 ∈ CHd−1
Q (E2).
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These definitions are made so as to ensure that τ1 =
d∑

i=1

η′i and τ2 =
d−1∑
i=0

θ′i. By [F, Example 16.1.2],

we have

η′i = `i−1 × pZY
2 ∗(p

ZY
1
∗
`d−i · τ1) and

θ′i = pY Z
1 ∗(τ2 · p

Y Z
2
∗
`i)× `d−i−1.

Now define ηi = (j × 1)∗η′i and θi = (1 × j)∗θ′i. By an easy argument (cf. [F, Proposition 1.10]) we
have:

ηi = j∗`
i−1 × pZY

2 ∗(p
ZY
1
∗
`d−i · τ1) and

θi = pY Z
1 ∗(τ2 · p

Y Z
2
∗
`i)× j∗`d−i−1.

Note that ηd is a product cycle on Y × Y of type (d, 0), θ0 is a product cycle on Y × Y of type (0, d),
and for i, 1 ≤ i ≤ d− 1, both ηi and θi are product cycles on Y × Y of type (i, d− i).

Define γ0 = θ0, γd = ηd, and for i, 1 ≤ i ≤ d − 1, γi = ηi + θi. One easily checks that
∑d

j=0 γj = σ.
By Lemma 2.4, γi • γj = 0 when i 6= j and hence

σ • γi = γi • γi = γi • σ

for i = 0, . . . , d. By Lemma 2.4, we also have: γi • γi = miaγi for some mi ∈ Z, i = 0, . . . , d.
Thus,

γi • γi = σ • γi = (σ • σ) • γi = σ • (σ • γi) = σ • (γi • γi) = mi(σ • γi) = mi(γi • γi).

This forces each mi to be 0 or 1.
Now define J = {j : 0 ≤ j ≤ d, mj = 0}. Because

d∑
j=0

mjγj = σ • σ = σ =
d∑

j=0

γj

we must have
∑

j∈J γj = 0. By replacing all γj , j ∈ J , with 0, we can ensure that the formulae

σ =
d∑

j=0

γj , γi • γi = γi, γi • γj = 0 when i 6= j

still hold.
Now since B is an ideal of CHd

Q(Y × Y ) by Corollary 2.8 and σ ∈ B, the previous relations imply
γi = γi • γi = σ • γi ∈ B.

Thus Proposition 2.6 implies γi • (f × f)∗πj = (f × f)∗πj • γi = 0 for 0 ≤ i ≤ d and 0 ≤ j ≤ 2d.
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Finally, define, for j, 0 ≤ j ≤ 2d,

ρj =
{

(f × f)∗πj + γd−j/2 if j is even
(f × f)∗πj if j is odd

(2.2.2)

The computations above show that [∆Y ] =
∑2d

j=0 ρj satisfies properties (i) and (ii) in the definition
of Chow-Künneth decomposition.

It remains to show that for any Weil cohomology theory H∗ and every j, 0 ≤ j ≤ 2d, clY×Y (ρj)
is the (2d − j, j) Künneth component of [∆Y ] ∈ H2d(Y × Y ; Q). Using the Künneth isomorphism
to make the identification H2d(Y × Y ; Q) ∼=

⊕2d
i=0H

2d−i(Y ; Q) ⊗Q H i(Y ; Q), it suffices to show that
clY×Y (ρj) ∈ H2d−j(Y ; Q)⊗Q H

j(Y ; Q).

Now πj is a projector in the original Chow-Künneth composition for X; so
clX×X(πj) ∈ H2d−j(X; Q)⊗Q H

j(X; Q). Hence, using properties of the cycle map from the definition of
Weil cohomology (see for example, [KL, Section 3]), we have clY×Y (f × f)∗πj = (f × f)∗clX×X(πj) ∈
H2d−j(Y ; Q) ⊗Q Hj(Y ; Q). Moreover, γd−j/2 is a product cycle of type (d − j/2, j/2); hence γd−j/2 =∑r

m=0 λm×µm, where λm ∈ CHd−j/2
Q (Y ) and µm ∈ CHj/2

Q (Y ). Again using properties of the cycle map,

clY×Y (γd−j/2) =
r∑

m=0

clY×Y (λm × µm) =
r∑

m=0

clY (λm)⊗ clY (µm) ∈ H2d−j(Y ; Q)⊗Q H
d(Y ; Q).

Thus, regardless of whether j is odd or even, clY×Y (ρj) ∈ H2d−j(Y ; Q)⊗Q H
j(Y ; Q).

Finally, suppose the Chow-Künneth decomposition for X satisfies Poincaré duality. Then πi
t = π2d−i

for 0 ≤ i ≤ 2d; so certainly (f × f)∗πi
t = (f × f)∗π2d−i. It remains to show that γt

j = γd−j for 0 ≤ j ≤ d.
Tracing through the construction of the γj ; we see that σ = [∆Y ] −

∑2d
i=0(f × f)∗πi is self-transpose,

i.e. σt = σ. We claim that the elements τi ∈ CHd−1
Q (Ei), i = 1, 2 can be selected such that τ2 = τ t

1.
To see this, let τi be (as in the construction) any elements such that σ = (j × 1)∗τ1 + (1 × j)∗τ2. Then
σ = σt = (1× j)∗τ t

1 + (j × 1)∗τ t
2 and hence

σ = (j × 1)∗
1
2

(τ1 + τ t
2) + (1× j)∗

1
2

(τ t
1 + τ2) = (j × 1)∗

1
2

(τ1 + τ t
2) + (1× j)∗

1
2

(τ1 + τ t
2)t.

This shows that we may replace (τ1, τ2) by (
1
2

(τ1 + τ t
2),

1
2

(τ t
1 + τ2)). Now direct computation shows

that η0 = θt
d and ηj = θt

j for 1 ≤ j ≤ d − 1. Hence γt
j = γd−j for 0 ≤ j ≤ d and the Chow-Künneth

decomposition for Y satisfies Poincaré duality.

Corollary 2.10. With hypotheses as in Theorem 2.9, suppose [∆Y ] =
∑2d

j=0 νj is a Chow-Künneth de-
composition for Y . Then [∆X ] =

∑2d
j=0(f × f)∗νj is a Chow-Künneth decomposition for X and νj =

(f × f)∗(f × f)∗νj + bj for some bj ∈ B. Moreover, if the Chow-Künneth decomposition for Y satisfies
Poincaré duality, then so does the Chow-Künneth decomposition for X.
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Proof. The formula for [∆X ] follows by applying (f × f)∗ to both sides of the expression for [∆Y ] and
noting that f × f has degree 1. It remains to check that {(f × f)∗νj}2d

j=0, is a set of mutually orthogonal
idempotents in CHd

Q(X ×X).
By Corollary 2.8, CHd

Q(Y ×Y ) we may write each νj uniquely as νj = (f × f)∗(f × f)∗νj + bj , where
bj ∈ B. Now using Proposition 2.6, the relation νi • νj = 0 for i 6= j implies that

(f × f)∗(f × f)∗νi • (f × f)∗(f × f)∗νj = 0 and bi • bj = 0

also hold. By Proposition 2.2,

(f × f)∗((f × f)∗νi • (f × f)∗νj) = 0.

Now injectivity of the map (f × f)∗ implies that (f × f)∗νi • (f × f)∗νj = 0 when i 6= j. Finally,

(f × f)∗νi • (f × f)∗νi = [∆X ] • (f × f)∗νi = (f × f)∗νi.

The remaining assertions are clear from the construction.

3 Murre’s Conjectures

We retain the notation and assumptions of the previous section. The goal of this section is to prove that
each of Murre’s Conjectures holds for X if and only if it holds for Y . The case of Murre’s Conjecture A

(existence of a Chow-Künneth decomposition) was completed in the previous section. In the interest of
making the proofs easier to follow, we use Greek letters for elements of CH∗Q(Y × Y ) or CH∗Q(X ×X)
and Roman letters for elements of CH∗Q(Y ) or CH∗Q(X).

We will need some results analogous to – but less complicated than – those of the previous section.

Lemma 3.1. If α ∈ CH∗Q(X ×X) and b ∈ CH∗Q(X), then

f∗(α • b) = (f × f)∗(α) • f∗b.

Proof.

(f × f)∗(α) • f∗(β) = pY Y
2 ∗(p

Y Y
1
∗
f∗β · (f × f)∗α)

= pY Y
2 ∗(f × f)∗(pXX

1
∗
β · α) = pY Y

2 ∗(1× f)∗(f × 1)∗(pXX
1
∗
β · α)

(3.0.3)

By means of an argument similar to that employed in Lemma 2.1, one sees that
pY Y
2 ∗(1× f)∗ = f∗pY X

2 ∗. Applying this fact, the above expression equals:

f∗pY X
2 ∗(f × 1)∗(pXX

1
∗
β · α) = f∗pXX

2 ∗(f × 1)∗(f × 1)∗(pXX
1
∗
β · α)

= f∗pXX
2 ∗(f × 1)∗(f × 1)∗(pXX

1
∗
β · α) = f∗(α • β)

(3.0.4)
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For i, 0 ≤ i ≤ d, define subgroups Ai = f∗CH i
Q(X) and Bi = j∗(Ker g∗ : CH i−1

Q (Z)→ CH i−d
Q (T )) of

CH i
Q(Y ). Observe that Bi = CH i−1

Q (Z) ∼= Q if i < d and Bi = 0 if i = d. Then

Proposition 3.2. CH i
Q(Y ) is the internal direct sum of Ai and Bi. Moreover, if α ∈ A, β ∈ B, a ∈ Ai

and b ∈ Bi, then α • b = β • a = 0.

Proof. Let VX = X − T and VY = Y − Z. Then VX
∼= VY and we have a commutative diagram:

CHd−1
Q (Z)

j∗ //

g∗

��

CHd
Q(Y ) //

f∗

��

CHd
Q(VY )

∼=

��

// 0

CH0
Q(T ) i∗ // CHd

Q(X) // CHd
Q(VX) // 0

The property CH i
Q(Y ) = Ai + Bi follows from a straightforward diagram chase. Now write α =

(f × f)∗u, a = f∗v, and b = j∗y. Then

α • b = (f × f)∗u • j∗y = pY Y
2 ∗(p

Y Y
1
∗
j∗y · (f × f)∗u)

= pY Y
2 ∗((j × 1)∗pZY

1
∗
y · (f × 1)∗(1× f)∗u

= pY Y
2 ∗(j × 1)∗(pZY

1
∗
y · (j × 1)∗(f × 1)∗(1× f)∗u)

(3.0.5)

Because g : Z → T = Spec k is simply the structure morphism, we have p2 ◦ (j × 1) = g× 1; thus the
above expression may be rewritten:

(g × 1)∗(pZY
1
∗
y · (g × 1)∗(i× 1)∗(1× f)∗u

= (g × 1)∗pZY
1
∗
y · (i× 1)∗(1× f)∗u)

= pY
∅
∗
g∗y · (i× 1)∗(1× f)∗u = 0.

(3.0.6)

Using Lemma 3.1 and Proposition 2.6, we have:

β • a = β • f∗([∆X ] • v) = β • ((f × f)∗[∆X ] • f∗v) = (β • (f × f)∗[∆X ]) • f∗v = 0.

From this point onward, we make the identifications

CH i
Q(Y ) ∼= Ai ⊕Bi and CHd

Q(Y × Y ) ∼= A⊕B

Corollary 3.3. Suppose ((f × f)∗α, β) ∈ CHd
Q(Y × Y ) and (f∗x, y) ∈ CH i

Q(Y ). Then

((f × f)∗α, β) • (f∗x, y) = (f∗(α • x), β • y)

Proposition 3.4. Let {ρi|i = 0, · · · , 2d} denote the Chow-Kunneth projectors constructed as in (2.2.2)
for Y starting with the Chow-Kunneth projectors {πi|i = 0, · · · , 2d} for X. Then the projectors {ρi|i =
0, · · · , 2d} satisfy Murre’s conjecture B (B’) if and only if the projectors {πi|i = 0, · · · , 2d} satisfy Murre’s
conjecture B (B’, respectively).
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Proof. First suppose X has a Chow-Künneth decomposition [∆X ] =
∑2d

i=0 πi satisfying Murre’s Con-
jecture B, i.e. π` • CHj

Q(X) = 0 when ` < j or ` > 2j, and let [∆Y ] =
∑2d

i=0((f × f)∗πi, βi) be the
Chow-Künneth decomposition for Y as given by the construction in the proof of Theorem 2.9, where
βi = γd−i/2 if i is even or 0 if i is odd. Now fix j, 0 ≤ j ≤ d, and consider (f∗x, y) ∈ CHj

Q(Y ). Note that
((f × f)∗π`, β`) • (f∗x, y) = (f∗(π` • x), β` • y). If ` < j or ` > 2j, then π` • x = 0. When ` is odd, clearly
β` • y = 0; so assume ` is even. Then β` is a product cycle of type (d − `/2, `/2); so it suffices to show
that for any u ∈ CHQ

d−`/2(Y ) and v ∈ CHQ
`/2(Y ), (u× v) • y = 0 when ` < j or ` > 2j. Then

(u× v) • y = pY Y
2 ∗(p

Y Y
1
∗
y · pY Y

1
∗
u · pY Y

2
∗
v) = pY Y

2 ∗p
Y Y
1
∗
(y · u) · v = pY

∅
∗
pY
∅ ∗(y · u) · v.

Note that y ·u ∈ CHj+d−`/2
Q (Y ). If ` < j, then j+d− `/2 > d; so y ·u = 0. If l > 2j, then j− `/2 < 0

so that pY
∅ ∗(y · u) ∈ CH

j−`/2
Q (Spec k) = 0. Thus, this Chow-Künneth decomposition for Y satisfies

Murre’s Conjecture B.

Next suppose X has a Chow-Künneth decomposition [∆X ] =
∑2d

i=0 πi satisfying Murre’s Conjecture
B’, i.e. π` • CHj

Q(X) = 0 when ` < j or ` > j + d. The only difference in the argument is for ` > j + d.
But ` > j+d implies j− `/2 < j− (j+d)/2 = j/2−d/2. Since j ≤ d, this means j− `/2 < 0, and hence
pY
∅ ∗(y · u) ∈ CHj−`/2

Q (Spec k) = 0 once more. Thus, this Chow-Künneth decomposition for Y satisfies
Murre’s Conjecture B’.

Conversely, suppose [∆Y ] =
∑2d

i=0((f × f)∗π, βi) is a Chow-Künneth decomposition for Y satisfying
Murre’s Conjecture B (Conjecture B’). This means that if (f∗x, y) ∈ CH`

Q(Y ), then (f × f)∗πj • f∗x =
0 when ` < j or ` > 2j (` > j + d, respectively). By Lemma 3.1 we have f∗(πj • x) = 0, and
since f∗ is injective, πj • x = 0. Corollary 2.10 then guarantees that [∆X ] =

∑2d
i=0 πi is a Chow-

Künneth decomposition for X satisfying Murre’s Conjecture B (Conjecture B’, respectively).

Proposition 3.5. Murre’s Conjecture C holds for X if and only if it holds for Y . Similarly, Conjecture
D holds for X if and only if it holds for Y .

Proof. Assume first that X has a Chow-Künneth decomposition satisfying Murre’s Conjecture C. Now
let [∆Y ] =

∑2d
`=0(f × f)∗π` +β` be a Chow-Künneth decomposition for Y coming from Theorem 2.9. By

Proposition 3.2 and Corollary 3.3, we have ((f × f)∗π` + β`) • CH i
Q(Y ) = (f × f)∗π` • Ai + β` • Bi =

f∗(π` • Ai) + β` • Bi. In particular, this implies that the filtration induced by this Chow-Künneth
decomposition (as defined in the Introduction) is described by

FmCH i
Q(Y ) = f∗FmCH i

Q(X) +Bi,m,

where Bi = Bi,0 ⊇ Bi,1 ⊇ . . . is a descending chain of subgroups. By Murre’s Conjecture C for X, the
term FmCH i

Q(X) is independent of the original choice of Chow-Künneth decomposition. Also, by [MU,
Lemma 1.4.4], F 1CH i

Q(Y ) is contained in the subgroup of CH i
Q(Y ) consisting of cycles homologically

equivalent to zero. If i = d, then Bi = 0; so Bi,j = 0 for all j. If i < d, then Bi = CH i−1
Q (Z) ∼= Q is

a one-dimensional Q-vector space, and its only cycle homologically equivalent to zero is 0 itself. Hence
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Bi,j = 0 for all j > 1, showing that the filtration FmCH i
Q(Y ) is independent of the original choice

of Chow-Künneth decomposition on Y . This proof also shows that if Conjecture D holds for X, i.e.
F 1CH i

Q(X) = CH i
Q(X)

hom
, then likewise F 1CH i

Q(Y ) = CH i
Q(Y )

hom
.

Conversely, suppose Y has a Chow-Künneth decomposition satisfying Murre’s Conjecture C. If
[∆X ] =

∑2d
i=0 πi is a Chow-Künneth decomposition on X, use Theorem 2.9 to construct a Chow-Künneth

decomposition [∆Y ] =
∑2d

i=0(f × f)∗πi + βi on Y . By assumption, the filtration defined by this Chow-
Künneth decomposition, i.e. FmCH i

Q(Y ) = f∗FmCH i
Q(X) + Bi,m is independent of the original choice

of Chow-Künneth decomposition on X; hence f∗FmCH i
Q(Y ) = FmCH i

Q(X) is also independent on this
choice, and so Conjecture C holds for X. The assertion concerning Conjecture D follows similarly.

4 Examples

We conclude by applying our results to two classes of examples.

4.1 Resolutions of Kummer varieties.

Let k be an algebraically closed field of characteristic 6= 2. Following the notation established earlier,
we denote by KA the Kummer variety associated to the abelian variety A (defined over k) and K ′A the
resolution of KA obtained by blowing up its (finite) singular locus. We recall the main result of [AJ]:

Theorem 4.1. [AJ, Theorem 1.1, Lemma 2.10, Corollary 2.11] Let A be an abelian variety of dimension
d over a field and G a finite group acting on A. Then there exists a Chow-Künneth decomposition
[∆A/G] =

∑2d
i=0 ρi satisfying Poincaré duality such that ρi acts as 0 on CHj

Q(A/G) if i < j or i > j + d.
In particular, if d ≤ 4, then ρi acts as zero on CHj

Q(A/G) if i < j or i > 2j.

Now the Kummer variety KA is obtained from an abelian variety A by taking the quotient by the
group G generated by the involution ι : a 7→ −a. The resolution K ′A is obtained from KA by blowing up
the image of the 2-torsion points under the quotient map π : A → KA. As observed in [DL, p. 4], the
Kummer variety of A is embedded in P2d−1 (using a symmetric theta divisor), so that the image of any
2-torsion point is a singular point étale locally isomorphic to the affine cone over the second Veronese
variety of Pd−1. (To see this, observe that the negation involution of the abelian variety A acts locally by
(z1, ..., zg)→ (−z1, . . . ,−zg) because it acts so on the tangent space. The ring of invariants is generated
by polynomials zizj . ) It follows that the exceptional divisor of the blow-up of the Kummer variety at a
2-torsion is isomorphic to Pd−1.

Let a ∈ A denote a 2-torsion point and K̃A the blow-up of KA along {π(a)}. Let Ã denote the blow-up of
the abelian variety A along {a}. Then the universal property of the blow-up, along with the observation
that G acts trivially on KA, shows that one obtains an induced map f : Ã/G→ K̃A. Since the exceptional
divisors of both blow-ups are isomorphic to Pd−1, the above map is quasi-finite. Moreover the Kummer
variety is known to be a normal variety: in [SAS] it is shown to be projectively normal. Thus, f is
a quasi-finite proper birational map with K̃A normal; so, Zariski’s main theorem implies that f is an
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isomorphism. (cf. [AM, Corollary 3.9].) This proves that K̃A is also a pseudo-smooth variety satisfying
the hypotheses of 2.2. Moreover, a similar argument shows that the intermediate schemes obtained by
blowing up each of the 2-torsion points on KA iteratively also satisfy the same hypotheses. Therefore,
Theorem 2.9 may be applied inductively; when combined with Proposition 3.4, we obtain:

Corollary 4.2. Let A be an abelian variety over an algebraically closed field of characteristic different
from 2 and K ′A its associated Kummer variety. Then K ′A has a Chow-Künneth decomposition satisfy-
ing Poincaré duality and Murre’s conjectureB’. When K ′A has dimension at most 4, Murre’s vanishing
conjecture B holds for K ′A.

4.2 Blow-ups of smooth varieties along a finite locus of k-rational points

If X is a smooth projective variety over an arbitrary field k (i.e. G is the trivial group) and a is any
k-rational point on X, the blow-up Y of X along {a} is smooth, with exceptional divisor isomorphic to
Pdim X−1. Thus, the hypotheses of Theorem 2.9 are fulfilled, and validity of each of Murre’s conjectures
on X is equivalent to its validity on Y . Since Y is smooth, this procedure may be iterated to extend this
result to the blow-up of a smooth variety along any finite locus of k-rational points.

For example, one may blow up an abelian variety along any finite set of k-rational points. The
resulting variety will then satisfy all those conjectures of Murre which hold for the abelian variety.
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