Modules over convolution algebras

from equivariant derived categories-I

Roy JosHUA

Abstract. In this paper, we provide a general (functorial) construction of modules over convolution
algebras (i.e. where the multiplication is provided by a convolution operation) starting with an appro-
priate equivariant derived category. The construction is sufficiently general to be applicable to different
situations. One of the main applications is to the construction of modules over the graded Hecke algebras
associated to complex reductive groups starting with equivariant complexes on the unipotent variety. It
also applies to the affine quantum enveloping algebras of type A,. As is already known, in each case
the algebra can be realized as a convolution algebra. Our construction turns suitable equivariant derived
categories into an abundant source of modules over such algebras; most of these are new, in that, so far
the only modules have been provided by suitable Borel-Moore homology or cohomology with respect
to a constant sheaf (or by an appropriate K-theoretic variant.) In a sequel to this paper we will apply
these constructions to equivariant perverse sheaves and also obtain a general multiplicity formula for the
simple modules in the composition series of the modules constructed here.

Table of contents.

0. Introduction
1. The equivariant derived category: a review.

2. Basic properties of equivariant hypercohomology (and equivariant K-theory).
. Convolution algebras via equivariant K-homology and homology: associativity of convolution.
. Construction of modules over convolution algebras from equivariant derived categories.

. Application to Hecke algebras and to affine quantum groups of type A,,.

(= N N

. The effect of the natural anti-involution on the module structures.

Supported in part by a seed grant from the office of research, Ohio State University, Columbus, Ohio, 43210. We also
thank the Institut Fourier, Grenoble and the University of Paris XIII for support during the work on this paper



0. Introduction

This paper has its origins in our effort to construct modules over Hecke algebras associated to a
complex reductive group from equivariant complexes on its unipotent variety. As it became clear that
our constructions apply in more general contexts, we decided to state our constructions in as broad a
context as possible. The result is the present paper.

We begin with a review of equivariant derived categories in section 1. Section 2 is a continuation of
section 1 where we establish some of the key properties of equivariant hypercohomology. We conclude
section 2 by quoting an equivariant Riemann-Roch theorem from ([J-7](4.2), see also [T-2]) that suffices
for the needs of the paper. Following Ginzburg (also Kazhdan and Lusztig), we consider convolution
algebras in detail in the third section. We consider such algebras in two distinct contexts: those defined
using a convolution operation in equivariant K-homology and those defined using a convolution operation
in equivariant homology. The equivariant Riemann-Roch provides the compatibility of these algebras.
We also consider the associativity of convolution in detail, as this forms the basis of the construction in
section 4. Section 4 forms the heart of the paper, where we provide a general construction of modules over
convolution algebras starting with an equivariant derived category. The key to this is a new interpretation
of the convolution product (see lemma, (4.3) and the discussion following it) in the setting of equivariant
derived categories and also a thorough understanding of the associativity of the convolution. The main
result of the paper is the following.

Let G denote a complex linear algebraic group acting on G-quasi-projective varieties (in the sense

o o o
of (1.3.2)) U and U and let f : U — U denote a G-equivariant proper map. Assume further that U is
smooth. Now one defines the structure of an associative (but not in general commutative) algebra on

00 00 o o
the equivariant homology HS(U; Q) using a convolution operation as in (3.2.7). (Here U = UxU.) Let
U

00 00
DZ’G(U ; Q) denote the equivariant derived category associated to U defined as in section 1.

oo

Theorem (See (4.6) and (4.7).) If K- € DZ’G(OUO; Q), H, (U; K*) has the structure of a left-module

over the convolution algebra HY (OUO, Q.

(The above theorem uses the pairing Q ® K — K. If, instead, the pairing K ® Q — K is used, one
obtains the structure of a right-module on H, (U; K).) This construction makes the equivariant derived

category Dg’G(ﬁ; Q) an abundant source of modules over the convolution algebra. The fifth section
considers various applications. Here we apply our results to produce an abundant supply of modules
over Hecke algebras and over affine quantum enveloping algebras of type A,,. The final section considers
the effect of the natural anti-involution (of the convolution algebra) on the module structures we have
constructed. In sequels to this paper we will show that variants of the above construction provide the
standard and co-standard modules as well as simple and self-dual modules over graded Hecke-algebras
(with and without parameters.)

We would like to express our special thanks and indebtedness to (the late) Robert Thomason, Jean-
Luc Brylinski, David Kazhdan, George Lusztig, Victor Ginzburg, Michel Brion, Dominic Luna, Yuval
Flicker, Amnon Neeman and Neil Chriss for many discussions and support during the work on this



paper. The author also wishes to thank the Institut Fourier and the University of Paris XIII where part
of the work on this paper was carried out.

Many of the constructions of this paper generalize in the context of generalized Verdier duality (as in
[J-2], [J-4]) to provide a construction of modules over the integral affine Hecke algebra from equivariant
presheaves of (equivariant) K-theory spectra. These will appear in a subsequent paper. An earlier version
of the present paper in fact used some of these machinery; we have however removed all references to
generalized Verdier duality in the present version, making the paper self-contained and dependent only
on the theory of equivariant derived categories and on an equivariant form of Riemann-Roch as in (2.12).

We would also like to point out that weaker forms of the above theorem may be obtained by simpler
[ [
techniques. For example assume the complex K = Ri'(QR L), L € DZ’G(U ; Q) (where U is viewed as

o 0 [e]e) o o
the second factor in U x U, Q is the obvious constant sheaf on the first factor and i : U — U x U is
00
obvious closed immersion). Now it is possible to show that H, (U; K) has the structure of a left-module

over the convolution algebra HY (OUO, Q) in a simpler manner. However, one can see from (5.3.1), that
there are many interesting cases that are not obtainable this way but to which our theorem applies;
theorem (6.5.3) that shows how to interchange the left and right module-structures also will not apply
to the above case.

Conventions. (0.1) Throughout the paper we will restrict to schemes of finite type over the complex
numbers, which are also quasi-projective or projective. (We may assume without loss of generality that
they are reduced, but we often need to consider schemes that are not irreducible.) We will refer to
these as quasi-projective (or projective) varieties. In order to allow compact Lie group actions on these
varieties, it is often convenient to enlarge the above situation. The generic term space will refer to either a
quasi-projective complex variety as above or a locally-compact Hausdorff space with finite cohomological
dimension. The first case will be called the algebraic case and the second the topological. pt will denote
point = the terminal object in the category of spaces.

1. The equivariant derived category: a review In this section, we recall the basic results on
equivariant derived categories from [J-5], section 6 (where the are stated in the l-adic setting). We have
chosen to stick to the simplicial construction adopted in [J-5] of equivariant derived categories through-

out. However one may equally well utilize the alternate approaches to equivariant derived categories in
[B-L] and [B-G].

(1.1.0) We will assume the basic situation of (0.1). Accordingly we are in one of the following two
situations: (i) X denotes a locally-compact Hausdorff space with finite cohomological dimension and
provided with the (left) action by a compact Lie-group G or (ii) X denotes a complex quasi-projective
variety provided with the (left) action by a complex linear algebraic group G. The first (the second)
case will be referred to as the topological case (the algebraic case, respectively). For the most part we
will only need to consider the algebraic case. Therefore we discuss explicitly only this case.

(1.1.1) In this situation one first forms the simplicial spaces EGXX in the usual manner (See [Fr]p.

G
4 for example.) Observe that (EG éX )n = G™ x X with the usual structure maps. Each of the face
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maps d; : (EGéX)n - (EGéX)n—l is induced by the group-action p : G x X — X and the projection

me : G X X = X and hence is smooth in the algebraic case.

(1.1.2) Now assume X. is a simplicial space (i.e. a simplicial object in the category of spaces), for
example, one of the simplicial spaces obtained as above. One puts a Grothendieck topology on X ., denoted
Top(X.), by defining the objects to be maps u : U — X,,, where w is the inclusion of an open set in X,
for some n. Given two such objects u : U — X, and v : V — X, for some n, m a morphism o : v = v
is given by a map « : U — V that lies over a structure map o' : X,, = X,, of the simplicial space X..
If X,, is a complex algebraic variety for each n, we will always consider only the transcendental topology
on X,.

(1.2.1). Let E denote a Noetherian ring. For the cases of interest we may assume FE is either Q,
C, or a field of characteristic 0. A sheaf of left (right) E-modules M on a space is constructible if
it is constructible in the usual sense. If X. denotes a simplicial space, a sheaf F' of E-modules on
Top(X.) consists of a collection {F,|n}, where each F), is sheaf of E-modules on X,,, provided with
a collection of maps ¢(a) : a*(F,) — F,, associated to each structure map a : X,, — X, of the
simplicial space X.. These are required to satisfy certain obvious compatibility conditions as in ([Fr]
p.14, for example). The category of such sheaves will be denoted by Shg(X.). We will let Dy ;(X.; E)
(Dp,r(X.; E)) denote the derived category of all complexes of sheaves of left E-modules (right E-modules,
respectively ) with bounded cohomology sheaves. A sheaf F' on X. has descent property provided the map
¢(a) : o*(F,) — F,, (as above) associated to each structure map «, is an isomorphism. A complex K" in
Shgr(X.) or in Shg(X.) has descent if all its cohomology sheaves { H!(K,)|n} have descent. Throughout
the paper a complex will mean one whose differentials are of degree +1. A sheaf F = {F,|n} of E-
modules on Top(X.) is constructible if each F,, on Top(X,,) is constructible in the above sense; one may
observe that if F' is a sheaf on Top(X.) with descent, F is constructible if and only if Fj is constructible.
Finally we say a sheaf F = {F,|n} on Top(X.) is locally constant if Fy is locally constant on T'op(Xj)
and F' is a sheaf with descent.

In the special case X. is the simplicial space EGéX as in (1.1.1) and F = {F,|n} is a sheaf on
EG éX with descent, we will say F' is a G-equivariant sheaf on EG éX and that Fy is a G-equivariant
sheaf on X. Now F'is a lift of Fy to EG éX . (Conversely any sheaf K on X is equivariant if there is a
sheaf F' = {F,|n} on EGéX with descent so that K = Fy.)

(1.2.2) Assume the above situation. Observe that the subcategory of sheaves with descent is an
abelian sub-category of Shg(X.) closed under extensions. Therefore one defines the category D;fﬁs(X 3
E) (D{¢*(X; E)) to be the full subcategory of the derived category Dy (X.; E) (Dy(X.; E), respectively
) of complexes of sheaves having descent. D,f:ldes(X 5 E) (D,f”fes(X .; E), respectively ) will denote the
corresponding full subcategory of complexes with constructible cohomology sheaves. (The subscripts [
(and r) will be omitted to indicate any one of the above categories generically, the default being l.)

(1.2.3) If X. = EG éX = the simplicial space associated to the action of a group G on a space X

(as in (1.1.1)), we will denote the category Dfes(X.; E) (D%*(X.; E)) by D¢ (X; E) (D°(X; E),
respectively ).



(1.2.4) For later applications will need to generalize the set-up in (1.2.1) as follows. (See (2.P.4) and
the remarks following it.) Let G denote a discrete group acting on the right on a simplicial space X..
(Observe that this action may be identified with the following data: for each g € G one is given a map

_ T T
of simplicial spaces Tj : X. = X. such that if g1, g» € G, the composite map X. 5 X. -5 X. equals
Ty5, .5 _
the map X. —/ X.) Now a sheaf F (of left (right) modules on X.) provided with a G-action is a
sheaf F on X. provided with the following data: for each g € G, there is given a map F — T;_F (of
left (right) modules on X.) so that if gi, g2 € G, the composite map F — Ty, (F) — T3, Tj,  F equals
the given map F — (T, 5,),F. This category of sheaves with G-action will be denoted Sh%(X.); this
category is known to be an abelian category with enough injectives - see [Groth] chapter 5. Therefore,

1x

under the above hypotheses, one may define D?(X .; E) to be the homotopy category of all complexes
in Shg(X .) with bounded cohomology sheaves localized by inverting maps that are quasi-isomorphisms
(= the homotopy category of complexes of injectives in Sh&(X.) with bounded cohomology sheaves).
One defines the derived category Dy**(X.; E) similarly.

(1.2.5) Observe that if G acts trivially on the simplicial space X., a sheaf F' on X. with a G-action
corresponds to a sheaf F' on X. provided with a representation of the group G on F (i.e. at each stalk).
If X is a space provided with the left-action of a group G along with the right-action of the discrete
group G so that the two actions commute, one observes readily that the G action on X extends to an
action on the simplicial space EG éX . Now one may define the derived category D,)G’G(X ; E) to be

D¥*%(EGxX; E).
G
Equivariant derived functors

(1.3.1) Let f: X. = Y. denote a map between simplicial spaces X. and Y.. Now f induces a map of
sites: V — V;< Xn, Top(Y.) = Top(X.). One may define the functors Rf, : Dg’des(X.; E) — D,f’d“(Y.;

E) in the obvious manner; if each f : X,, — Y,, is also proper one may let Rfy = Rf,. In general, if
f admits a factorization f = fo j where j : X. — X. is an open imbedding (in each degree) into a
simplicial space X. and each f, is a proper map, one may define Rfy = Rf.j:.

If f is a G-equivariant map between spaces X and Y provided with the action by a group G, f
induces a map f¢: EGxX — EGxY of simplicial spaces. The induced functor RfS : D{**(EGx X;
G G G

E) = D{%(X; E) — Dg’d“(EGéY; E) = Dy“(Y; E) is given by RfS = {RfS, : D((BEG X X)n;
E) = Di((EGXY)n; E)|n}.

(1.3.2) If G denotes a complex linear algebraic group, we will consider mostly G-quasi-projective
varieties. Recall that a G-variety X is G-quasi-projective, if there exists a G-equivariant locally-closed
immersion of X into a projective space P" provided with a linear action by G. A theorem of Sumihiro (see
[Sum], Theorem 1) shows that if G is connected any normal quasi-projective variety is G-quasi-projective.
(It is shown in [J-7](1.9), that the hypothesis that G be connected may be dropped; however this is not
important for the present paper since the groups here will be usually connected.) If f : X — Y is a
G-equivariant map between two G-quasi-projective varieties, one obtains a G-equivariant locally-closed
immersion X — Y x P", for some n >> 0. (G acts diagonally on the latter.) Let X = the closure of X
in Y x P". Now one may factor f as foj, where j : X — X is the obvious G-equivariant open immersion
and f: X = Y xP? =Y is the obvious projection. In case f is a G-equivariant map as above, we will
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let the induced functor RfC : D,f’d“(EGéX; E)=Dy%(X; E) = D,f’d“(EGéY; E)=D{°(Y; E) be
given by Rf{ o j = {Rf, 0 jS, : Dg((EGéX)n; E) — D,f((EGéY)n; E)|n}. The above description
of the functor Rf shows readily that it is independent of the factorization f = f o j.

(1.3.3) Let K- = {K,|n} € DZ’G(X; E). (One may view K- as a differential graded object in
the category ShE(EGéX).) Now {I‘((EG();X)H; K,)|n} is a cosimplicial object in the category of
differential graded objects in the category of E-modules. Let N({T'((EG éX Yn; Kp)n}) denote the
double complex given by applying the normalization functor. If K = GK is a quasi-isomorphism into

a complex of flabby sheaves in D,f’G(X ; E), we let Hg (X; K) = the differential graded object given
by TOTN({F((EGéX)n; GK,)|n}), where TOT denotes the total complex of the double complex.

We call this the G-equivariant hypercohomology spectrum of X with respect to K. The equivariant
hypercohomology of X with respect to K are the cohomology groups of this differential graded object;
these will be denoted HY, (X; K).

In this situation there exists a spectral sequence:

(1.3.4) B3" = Hy(X; HA(FY)) = HG™ (X; F)
which converges strongly since F- is a complex of sheaves of modules over E with bounded cohomology
sheaves.

(1.3.5) The equivariant hypercohomology of X with compact supports may now be defined to be
Hy . (X; K) = H5(X; jiK), where j : X — X is a G-equivariant closed imbedding into a space X
that is proper over pt (= Spec C, in the algebraic case.)

Equivariant Verdier duality: local form. (See [J-5] section 6 for more details.)

(1.4.1) As discussed in (1.3.2) we will mostly consider G-quasi-projective varieties. If BG. denotes
the classifying simplicial space for G, we define the dualizing complex for the category Dg’d“(BG; E)
to be the constant sheaf E. If 7. : EGéX — BQG. is the obvious map, we let D = Rr.'(E) be the

dualizing sheaf for the category Dy**(EGxX; E). If K € Dy**(EGxX; E), we define Dy (K) =
G a

RHomg(K, Dg). One may readily verify (observe that (Dg), = the dualizing complex for the category

D,f((EGéX)n; E)) that the natural map K — Dg(Dg(K)) is a quasi-isomorphism.

(1.4.2) Next assume that f : X — Y is a G-equivariant map of G-quasi-projective varieties. Now
one defines R(f¢)' : D¥C(Y; E) — DY(X; E) to be right adjoint to R(f),. (The existence of
such a right adjoint follows readily from the description of R(f%), as {R fff* o jf,  : Dy ((EG éX Vn;

E) — Dg((EGéY)n; E)|n}. We summarize the main results:

(1.4.3) Proposition. (Local form of Verdier duality). Assume the above situation.

(i) Now RfC is independent of the factorization f = f o j.

(ii) There exist natural quasi-isomorphisms: Rf¥(L") ~ Dy o RfS o Dx(L'), L € Dg’G(X; E) and
RfS(K')~ Dx o f¢" o Dy(K"). K ¢ DY°(Y; E).

(iii). There exists a natural map (= the trace-map) tr(f¢,K-) : RfS o Rf¢'K — K, natural in
K ¢ DYY(Y; E).



(iv) f : X — Y denote a G-equivariant smooth map between G-quasi-projective varieties of relative
dimension d. Now there exists a natural isomorphism

P: f*[2d] — Rf" as functors Dg’G(Y; E) — D;’G(X; E).
(Since the Tate-twist remains constant for fixed X, Y and G, we have ignored it.)

(v) If in addition to the hypothesis in (i), f is proper, one obtains a natural identification of R(f%)
with R(f%)..

Proof. All of these may be readily established by observing Rf¢ = {Rf5 : Dy**((EG éX Yn; E) =
D,f’d”((EGéY)n; E)n} and RfS = {RfC" : Dg’des((EGéY)n; E) — Dg’d”((EGéX)n; E)|n}. O

(1.5.1) Proper or smooth base-change. Let E

X — X
g’

al |7

Y —— Y
g

denote a pull-back square of schemes as in (1.1.0) (i.e. all the schemes here are acted on by a group G
and all the maps are G-equivariant) so that f is also proper or g is smooth. If K ¢ D,f’G(X ; EB), we
obtain natural quasi-isomorphisms:

Rf'7R(gC)VK ~ Rg® (Rf,(K)), Rf'® .99 K ~ ¢¢"RfC,K
Proof. This also follows from the same observations as in the proof of (1.4.3).

(1.5.2) Naturality of the trace-map with respect to base change. Assume the above situation.

Now RgG!(tr(fG,K)) : RgG!RfG!RfG!K — RgG!K identifies with the map

1G fed /G Gl ! ~ G /G! fed G!

tr(f'”,Rg” K) : Rf'Y'Rg"" Rf* (K) = Rf""\Rf'"” (Rg” K) = Rg“ (K)

If ¢ is smooth one obtains a similar result with g¢* replacing Rg® .
Proof. Observe that Rg® tr(f¢,K) is given by Dgé*RfCf¢*DK = Dg*DDRfC,DDfG* DK (=
RgG!RfG!RfG!K) — Dg"DK. This is the dual of the natural map ¢ DK — ¢S Rf% f¢"DK.
On the other hand tr(f’G,RgG!K) may be identified with the map DRf’*GDDf’G DD¢%* DK —

Dg%" DK, which may be identified with the dual of the natural map ¢¢ DK — Rf’ff’G*gG*DK.
Therefore it suffices to show the square

g¢" DK —— ¢9"Rf9f¢" DK
idl l:
¢¢* DK —— Rf'C 9 ¢¢* DK
or equivalently
DK —— RfGf¢* DK

4| !

DK — RgGRf'®, ¢ ¢* DK = RfGRg'C ¢’ f* DK
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commutes. This is clear. (Use the adjunction between RfE and f&” to convert the last diagram to:
fG* DK —4 f¢*DK

g | e

f9" DK —— Rg'¥g“ 19" DK

(1.6) We conclude this section by recalling the definition of the equivariant intersection cohomology
complexes. (See [Bryl-1] or [J-3]). Here E will denote either Q or C. Assume {S} is a G-invariant
stratification of X into finitely many locally-closed smooth sub-schemes in the algebraic case, called
strata, all which are of pure dimension (disjoint unions of manifolds of the same dimension, in the
topological case, respectively ). One may now form the corresponding filtration f = U; C Us C ... C
U, CUpy1 = X. (Here n is the complex dimension of X and each successive difference U; — U;_; is a
disjoint union of strata of the same dimension = n —4+ 1.) Since the strata are G-invariant this induces
a corresponding filtration of the simplicial space EG é X:

EGxU; - EGxUy — ... » EGxUpy1 = EGxX
G a a G
Let j¢ : EGxU; = EGxUjy1 denote the map induced by j : U; — Usy1 -
a G

(1.6.1) Let £ denote a G-equivariant locally constant sheaf on U;. £ defines a sheaf on the simplicial
space EGxU; as above. If p denotes a fixed perversity, this sheaf is extended to a complex of sheaves
a

ICE (L) on EGxX called the equivariant intersection cohomology complex with perversity p. (The
G

hypercohomology of EG x X with respect to this complex is called the equivariant intersection cohomology
G

of X with respect to L and is denoted I H 1? *(X; £). Such equivariant intersection cohomology complexes
(for irreducible representations £ of m(U1)) form the simple objects in the category of equivariant
perverse sheaves; these form the heart of the equivariant derived category D,f’G(X ; Q). (See [J-3] and
[J-5] for more details.)

2.Basic properties of equivariant hypercohomology and K-theory

Assume the situation of (1.1.0). We begin by defining equivariant homology; this will always be with
locally compact supports, so we will often call this merely equivariant homology.

(2.1)Definition. We define the equivariant homology of X relative to G to be

HE(X; E) = Hy (X; Dp )
where Dg is the dualizing complex for the category DZ’G(EG éX ; E) asin (1.4.1).

Let X — X denote a closed G-equivariant immersion of X into a smooth G-scheme X. Now one
defines K§'(X) = K& +(X) = the Grothendieck group of G-equivariant coherent sheaves on X with

supports contained in X. Throughout our discussion, M will denote a maximal compact subgroup of G.
Now one lets K4 s0(X) = K{\‘&O(JZ ) = the M-equivariant Atiyah-Segal K-theory of X with supports
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in X and KfY ((X) = Kﬁi}p % (X) = the M-equivariant topological K-theory of X with supports in X.
(See [J-7] sections 1 and 2 or [T-2] section 5 for a thorough discussion of these theories. There it is shown
that K}'g ((X) is independent of the chosen closed immersion X — X.) Recall that if X is smooth, one
obtains a Poincaré-duality isomorphism: K§ (X) = K2(X) where the former is the Grothendieck group
of G-equivariant locally free coherent sheaves. Similar isomorphisms exist for equivariant Atiyah-Segal
K-theory and equivariant topological K-theory.

Next we will list a few of the properties of equivariant hypercohomology. Throughout we will assume
that K € Dg’G (X; E), where E is either Q or C.

2P1IfKe Dg’lG(X ; Q), HE, (X; K) is a finitely generated left-module over HY, (X; Q) and hence
over H*(BG; Q). (Observe that R(G) = R(M) where M is a maximal compact subgroup of G. Now
[A-S] shows that if Is denotes the augmentation ideal of R(G) (i.e. the kernel of the rank-function:
R(G) — Z) then, H*(BG; Q) is isomorphic to the completion of R(G) ® Q at the ideal I.)

2P.1) K§(X), K} o(X) and K[, ((X) are modules over the representation ring R(G) = R(M).

top,0

(2.P.2) Restriction. If H C G is a closed subgroup, then there exists a natural restriction homo-
morphism (of H*(BG; E)-modules) : H, (X; K) — Hj; (X; Resg(K)), where Resg(K) (= i*K as in
(A.2)) is the obvious object in Dg’H (X; E). Similarly, one obtains restriction homomorphisms (of R(G)-
modules): K§(X) — KJ(X), Kilg (X) — K} (X) and KM (X) — KM ((X) if M’ denotes
MnNH.

Remark. The next two properties (2.P.3) and (2.P.4) find essential application in [J-6].

(2.P.3) Let H denote a closed (and not necessarily connected) subgroup of G. Let i : EH I>§X —
EGx(GxX) denote the obvious map (of simplicial spaces) induced by the map X — GxX sending z to
G H H

(e, ). Clearly this is a closed immersion (closed imbedding, in the topological case) in each degree. Let
Ke Dg’G(G X X; E). Clearly i*(K) is a complex of sheaves on EH o X. Now ¢* induces an isomorphism:

(2.P.3%) Hi (X;i*(K)) = (GEX; K)

This is immediate from Theorem (A.1) in the appendix which shows that the functor i* is fully-faithful.
In particular if L € D,f’G(X; E), one obtains the isomorphism Hi (X;i*(n*(L))) — HE (GxX; n* (L))
H
where 7 : EG é(G xX) - EG éX is the obvious map induced by the projection GxX — X. (In this
H H
situation, the composite map 7 04 : EH1>L<IX — EGéX will be denoted ¢ as in (A.2).)

(2.P.3)’ Let X denote a projective complex algebraic variety acted on by a complex linear algebraic
group H. We will assume that the action is on the right. Let H — H denote the imbedding of H as
a closed algebraic subgroup. (We may also alternatively assume that both H and H are compact Lie
groups.) Let X = (X x H)/H, where H acts on the right on X x H by (z,h).h = (z.h,h™".h) , h e H
and h e A. Now H acts on the right on X by: (z,h')oh = (z,h'.h), z e X, k', h € H. Let K e Dy"" (X;
E). Let ix : X = X denote the obvious map (- this is clearly a closed imbedding); this is compatible
with the right actions of H on X and H on X. The corresponding induced map EH I>§X — EH I>_;X' will

also be denoted by ix. Now ¢x induces a natural isomorphism:
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Hy; (X i% (K)) ~ Hy (X; K)

To see this one may proceed as follows. One first observes readily that the fibers of the obvious
map p: X = (X x H)/H — H/H are isomorphic to X. Let Z denote a fixed point of H/H and let
iz :  — H/H denote the corresponding inclusion. One now obtains the pull-back square:

X 2 X =(X xH)/H
di |»
F —E (H)/H
The left-most column is H-equivariant (where H acts trivially on Z) while the right-most column is
H-equivariant. The above diagram induces a map of the hypercohomology spectral sequences:

Eg’t(l) = H*(BH; R'p.i%(K)) = H*(BH; i R'p.(K)) = H*(X; i%K) and
Ey*(2) = H*(EHx(H/H); R'p.(K)) = HF* (X; K).
"
(Since X is projective one may use proper-base-change to obtain the = on the first line.) In view of
(2.P.3%) with G = H, X = Z, we observe that the two E>-terms above are naturally isomorphic. Clearly
this is induced by a map of the above spectral sequences and therefore, we obtain an isomorphism at the

abutments as well. (Recall that the above spectral sequences are strongly-convergent.) This completes
the proof of (2.P.3)’.

(2.P.4). Assume in addition to the assumptions of (2.P.3) that H is also normalin G. Now we obtain
a right-action by G = G/H on the space G I>§X that commutes with the left-action by G. If g € G and

(90,7) € G x X we let (go,).9 = (go.9, 9~ *.z). Recall that if h € H, (go, =) and (go.h, h~1.x) represent
the same point in Gx X. Since H is normal in G, h.g = g.h', for some h’ € H. Therefore (go.h,h1.2).g =
H

(go-h.g,9 *.h 1.z) = (go.g.h', W' *.g~.x) which is identified with (go.g, g *.z). It follows that we obtain
a well-defined right-action of G on GxX. One may readily see that this commutes with the left-action
H

of G on the same space; therefore we obtain a right-action of G' on the simplicial space EG é(G 1>1<rX ).
For each g € G, let T : EG é(G EX ) — EG é(G I>§X ) denote the corresponding map. The simplicial
space EGéX has the trivial action by G = G/H and the maps m, : (EGé(G;;X))n — (EGéX)n
are now G/ H-equivariant for each n. One may now consider the derived categories DS’G/ H(X; E) and
Df’G/H(EGé(G;}X); E) as in (1.2.5).

If follows that if K ¢ DP"9/" (X E), 7*(K) € DC’G’G/H(EGE(GEX); E) and that, therefore, there
exists a natural map 7*(K) — (T5).7*(K) = 7*((T5)«K) of complexes on EGé(GEX), for every
g € G =G/H. On taking the hypercohomology, for each g € G, one obtains a map

(2PA41) Ty : Hyy (X5 6 K) = Hy (G X; 7 (K)) = Hy (GxX; 7(K)) = Hyy (X; i K)

(Here the isomorphisms indicated by & are from (2.P.3*).) One may now readily verify that this provides
an action of G = G/H on the hypercohomology groups M} (X; i*K).

Moreover one obtains a ’fibration’
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EHxX % EGxX 2y B(G/H)
H G
If K is a complex as above, one now obtains a Leray (or Leray-Hochshild-Serre) spectral sequence:
Ey' = H*(B(G/H); R'p.(K)) = HZ" (X; K)

where the functor p, is the direct image functor for a slightly different site (called the simplicial site in
[J-5](A.4)). We will assume in addition that G/H is projective, for example, is finite. In this case each
of the maps p,, is proper. It follows as in ([J-5] (A.8)) that one may identify the stalks of R'p,(K) with
L, (X; i*(K)). In particular if G/H is finite and K e DE’G’G/H(X; E) is as above, one obtains the
identification:

(2.P.4.2) H: (X; K) =~ (H, (X;i*(K)))(©/H)

Remarks. Now we will consider an example of the above situation. Let G be not necessarily
connected and let H = G° = its connected component containing the identity. Now let F = {F,|n}
denote any constructible sheaf of E-modules on BG; Fy is clearly constant on (BG)g. Therefore F is G-
equivariant (or equivalently has descent) if and only if it is locally-constant on BG. (See the definition
towards the end of (1.2.1).) Now locally constant sheaves on BG are classified by the monodromy
representations of 71 (BG, *) = G/G° (at each stalk). Therefore F' has an action of G/G° on each stalk.
Since G/G° acts trivially on BG, it follows that F' belongs to D,f’G’G/GG (pt; E) = Dg’des’G/Ga (BG; E).
(See (1.2.5).) If G acts on a space X and 7 : EG();X — BQG. is the obvious map, it is now clear that

K =n*(L) e D“G:G/G°(X; E), whenever L is a G-equivariant constructible sheaf of E-modules on BG.
Moreover, by (2.P.4), G/G° acts on HY, (X; i*n*L). (In [J-6] we show D% (pt; E) ~ Dg’G’G/G (pt; E).)

(2.P.5). Let f : X — Y denote a G-equivariant map between two G-spaces as in (1.1.0). If
K e DPC(Y; E), the natural map K — R(f%).(f%)*(K) (see (1.3.1)) induces a map f*: H (V; K) —
H, (X;(f¢)*K) for each n. (Here f© : EGéX — EGéY is the obvious map induced by f.) Similarly

f induces maps f* : K%(Y) — K%(X); similar induced maps exist f* : Ki;>°(Y) = K1 >°(X) and
frEPOY) = Kt (X).

(2.P.6). Assume in addition to the situation in (2.P.5) that G is a complex linear algebraic group, X
and Y are G-quasi-projective varieties and f is proper. Now the trace-map tr(f%, K) : R(f%).R(f¢) (K) ~
R(fS)WR(f) (K) = K (see (1.4.1) and (1.4.3)(ii)) induces a map

fo: Hg (X5 R(fO)(K)) = Hg (V3 K).

If K = Dg, the dualizing presheaf for the category Dg’G(Y; E), one observes (in view of (2.1)) that the
above map becomes

fo HI(X; B) - HZ(Y; E).

If, in addition, f is also smooth, one may identify R(f%)'(K) with (f¢)* K[2d] and hence the above
map may be identified with a map £, : H, (X; (f9)*(K)) — Hg (V; K).

(2.P.6"). Under the same hypotheses, one obtains a map f. : K§(X) = K§(Y). f X = X (Y = Y)
is a G-equivariant closed immersion into a smooth G-scheme X (17, respectively ), one may define

fo: KO 4 (X) = KO (V) to be the composition: K& (%) = K§(X) L5 K§(Y) 5 K& (7).
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To define f, in equivariant Atiyah-Segal and topological K-theory one proceeds as follows. Observe
first that, under our hypotheses, the map f factors as a G-equivariant closed immersion X — Y x P”
and the projection m : Y x P* — Y. (Here G acts linearly on P™.) Now one may compute (see [Seg -2]
or [T-2])

K%s,o(y x P) = 0<?<nK%5,O(Y)[—O]Pn(—q)]

Therefore one may define 7, to be projection to the summand indexed by Ops(0). One defines =, :
Kﬁ’%gpn(f’ x P™) — Kf,l'g;o(?) to be the composition my : Kf,j'g,’gpn(? x Pr) S K} o(Y xP™) LI
K} oY) N Kf,lg,’o(?). Clearly one obtains an induced map i, : K]{‘I-&O(X) — Kf,f"*z}gpn(f" x P™).
Now one defines fi = 74 0 4x. One defines f. in equivariant topological K-theory similarly. (One may
consult [J-7] for additional details.)

(2.P.7). Assume in addition to the situation in (1.5.2) that the map f is proper and the map g is
smooth. Let K € D{°(Y; E).

(i) Now one obtains a commutative square:
1 * !
Hy (X; Rf'K) —— Hy(X'; Rf'® g°K)

| .
Hy(ViK)  — = Hy(V'; g7K)
(ii) Let H denote a closed sub-group of G and let i : EHxX — EGxX denote the corresponding
H G
map. Now one obtains the commutative square (where the horizontal maps are the restriction homo-

morphisms):

Hy; (X; Rf¢'K) —— Hy(X; RfC*K)

| |»

H;(Y;K) ——  Hy(Y;i"K)

Proof. In view of the hypotheses, Rg¢ may be identified with ¢&* (modulo an even dimensional shift)
and hence (1.5.2) provides the commutative square:

RfORf (K) —— RgCg® RfSRfO K —=— RgCRfCRf'® ¢° K

tT(fG,K)l lef‘gG*tr(fG,K) leftr(f’G,gG*K)
K — RgCg%"K 1, RgCg%* K
Taking equivariant hypercohomology on Y one obtains the commutative square in (2.P.7)(i). It is clear
that the left-vertical map (the right vertical map, the bottom map) in the above square induces the corre-
sponding map in the square in (2.P.7)(i). To see that the top map in the above square induces the top row
!
in the square (2.P.7)(i) observe the natural identification RgGRf'CRf'® ¢¢*K ~ RfGRg'Cg'® Rf¢'K.
(Now take equivariant hypercohomology on Y.) This proves (i). The same proof applies in (ii) where

g% is replaced by the map i, since by (A.2), Ri' may be identified with 4*.

(2.P.7)’ Under the same hypotheses on f and g, one obtains a commutative square:
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Ko%(X) —— K§(X)
I l lf "
K§(¥) —— K§()

as well as similar commutative squares in equivariant Atiyah-Segal K-homology and in equivariant topo-

logical K-homology (with respect to the action of a maximal compact subgroup of G). These may be
established by factoring the map f as the composition X = Y x P* 5 YV - the details are skipped.

(2.P.8) Next assume that G is a complex linear algebraic group acting on a complex algebraic variety
X. If the action is trivial one may observe readily that EGxX = BG x X and that therefore H(X;
G

K) ~ H*(BG; Q ® H*(X; Ky) where K = {K,|n} € DZ’G(X; Q). It follows that in this case H}(X;
K) is a free H*(BG; Q) = R(G) ® Q™-module which is also finitely generated if K is constructible - see
(1.2.1). (Here the completion is at the augmentation ideal - see [A-S]).

(2.P.9). Homotopy Property. We will assume that G is a complex linear algebraic group acting on
a complex quasi-projective variety X. Let £ denote a locally-constant G-equivariant sheaf of Q-vector
spaces on X. If 7 : X — Y is a G-equivariant algebraic vector-bundle on X, then 7* induces an
isomorphism:

HE, (X5 7(£)) = Hg (V5 £).
This follows readily from the Leray-spectral sequence:
E3' =W, (Y; Rima(m*L)) = HE™(X; L)

since Rim,(n*L£) =2 0 unless t =0 and = L if t = 0.

(2.P.10) Proposition.(Projection formulae).

Let X, Y denote complex quasi-projective varieties provided with the action of a complex linear
algebraic group G and let f : X — Y denote a G-equivariant map. Let P, L, L' ¢ D,f’G(Y; E) be
provided with a pairing P® L — L'.

(i) Now we obtain the commutative square provided f is proper:

Hy, (X; (Rf)'P) @ W (V; L) ——= W, (X; (RfC)' P)) @ H (X; (f6)*L) — H (X; (RFE)'L')

I+ ®idl f*l

Hz (Y5 P) @ Hg (Y5 L) Hg (Y5 L)

(i)’ Suppose in addition Yy LN Y, Y, 2,y and Y; =YiNY; 5, ¥ are three closed G-stable subspaces
of Y and Py e DF°(V1; E) (Lo € Dy%(Ya; E), Ly € DY%(Yi N Ya; E)) so that P = i1, Py (L = 2. Lo,
L' = i3, Ly, respectively ). Let X; C f~1(Y1) be a closed G-stable subspace so that the induced map
X1 — Y; is proper, but not necessarily f. Now one obtains a commutative diagram (where Xy = f _l(Yz)
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and the induced map X; — Y;, i = 1,2, is denoted f; while the induced map X1 N Xo — Y1 NYs is
denoted fi 2):

Wy, (X1; (RFC) Po) @ Wy (Va; Lo) — = Mz, (X1; (RFE) Py)) © B, (Xo; (f§)* Lo) — Hiy (X1 0 Xo; (RFE)'LY)

f1*®idl/ f1,2*l

H; (Y15 Po) ® H; (Ya; Lo) HE; (Y1 NYa; L)

(ii) Under the same hypotheses as in (i) one also obtains the following commutative square:

* s
f®1d*

H, (V5 P) ® H (X; (Rf9) L) — Hg; (X; (f€)* P) @ He, (X; (Rf €)' L) —Hg (X; (RfC)'L)

id®f*l f*l

Hg (Y; P) @ H (Y5 L) Hg (Y5 L)

(i)’ Suppose in addition to the hypotheses as in (i), V3 N Y,Y; 2, ¥ and Ys;=Y1NY, 5, ¥ are three
closed G-stable subspaces of Y and Py € Di*°(V1; E) (Lo € Dy®(Y; E), Ly € Dy®(Yi NYs; E)) so that
P = i1,Py (L = iguLo, L' = i3.L{, respectively ). Let Xo C f~!(¥2) be a closed G-stable subspace so
that the induced map fs : Xy — Y5 is proper, but not necessarily f. Now one obtains the commutative
diagram (where X; = f~(Y;) and the induced map X; — Y;, i = 1,2, is denoted f; while the induced
map X1 N Xy — Y1 NY; is denoted f12):

W, (Vi Po) @ M, (Xo; (RFC)Y (Lo)) — = Tz, (X1; (£§)* Po)) ® Mgy (Xo; (RFC) (Lo)) — Hs (X1 N Xa; (RFG,)'LY)

id®f2*l/ fl,z*l

Hg (Y1; o) @ H (Yz; Lo) HE (Y1 NYa; Lo)

Proof. We will first show in detail how to obtain the first commutative diagram. We begin with the

cartesian square:

(2.P.10.1)
EGéX A EGx(X x X)14x/¢ EGx(X xY)
G G

fGl foidl

EGxY A EGx(Y xY)
@ G

The top row in the above diagram will be denoted T'(f¢).

We will make use of the following notation. Let U, V denote two spaces as before provided with a
G-action. Let m : EGX(U x V) - EGXU (72 : EGX(U x V) — EGéV denote the projection to the
G G G

first (second, respectively ) factor. If F' (F') denotes an object in Dg’G(EGéU; Q (Dg’G(EGéV; Q),
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respectively ) then F'X F' will denote the object in D;’G(EGé(U x V); Q) given by n} (F) @ mj(F'). If
U=V, wewil let F® F' denote A*(FX F'), where A : EGéU — EGZ(;(U x U) is the diagonal. Now

observe the existence of pairings:
(2.P.10.2) A*(PXR L) — L' or equivalently PX L — A, (L") and
(2.P.10.3) A*((f9)*PR (f9)*L) — (f¢)*L' or equivalently (f¢)*P X (f%)*L — A.((f%)*L")

Next we show the existence of a natural transformation:
(2.P.10.4) T(f9)* o R(f¢ x id)' — (Rf%)' o A*

Clearly such a map is adjoint to a natural transformation R(f%). o T(f%)* o R(f¢ x id)' — A*. Since f
is proper, we may use proper-base change (see (1.5.1)) to identify the left-hand-side with A* o R(f¢ x
id).R(f¢ x id)". Therefore its suffices to show the existence of a natural transformation form the latter
to A*. The latter clearly exists, since we may apply A* to the natural transformation (see (1.4.3)(iii))
R(f¢ xid),R(f¢ x id)' — id. Therefore we now obtain the map:

(2.P.10.5) R(f% x id)'(PR L) — RT(f9).T(f)*R(f¢ x id)'(P R L)
— RT(f9).(Rf)(A*(P® L)) — RL(f9).((Rf€)'L")
where the last map is obtained from the pairing A*(PX L) = P® L — L'. This map will henceforth be

denoted ®. Clearly the pairing in (2.P.10.2) induces the map forming the bottom rows of the diagram
(i) and (ii). The map @ in (2.P.10.5) induces a map

! dRF* .
HE; (X; (RfC) P) @ Hy, (Y; L)) —— H; (X; (RfY)' P) © Hg (X (f9)*L) — Hy (X; (RFY)'L))
forming the top row of the first diagram. Observe that the map ® is adjoint to the map
(2.P.10.5) T(f9)*R(f€ x id)'(P R L) 25 (Rf%)'L’
which is the composition of the map in (2.P.10.4) (applied to P X L) with the map A*(PX L) — L'.

Now we obtain the diagram of pairings that commutes upto natural quasi-isomorphism :

(2.P.10.6)
A*R(fC¢ x id)R(f¢ x id)' (PR L)

/ )

RfS((RfS) L)) ~——LZRIST(9)*R(fC x id) (PR L)

:

RfZR(f9)HL)

RfZR(f9)(A*(PR L))

tr(fG)l tr(£%)
) A*(PR L)

The commutativity of the bottom square in the above diagram follows from the observation that the
trace map tr(f¢) is natural. To establish the commutativity of the top square, it suffices to show the
square
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RT(f6),RfS'L' «2—  R(f% xid)' (PR L)
j l
RT(f%).RfG¢'L' «—— RI(f%),Rf¢'A*(PR L)

commutes; this is clear from the definition of the map ®. The fact that the square in (2.P.10.1) is
cartesian implies that one has the natural quasi-isomorphisms:

A* o R(f9 x id). = RfZ o T(f9)*

by proper-base change. This proves the top-most vertical map in the above diagram is a quasi-
isomorphism. The commutativity of the top triangle in the above diagram is clear since we may define
the third side to be the composition of the other two maps in the triangle. Clearly the diagram (2.P.10.6)
provides the commutative diagram:

RALRfER(fO)(L")<=— R(f% x id).R(f¢ x id)'(PX L)

| |

RA (L") PXL

where the top row factors as in the diagram (2.P.10.6). Clearly this diagram provides the diagram in
(2.P.10)(i). (Recall that RALRfER(f¢) = R(f¢ x id).RT(f%).R(f¢)". This along with (2.P.10.5)
shows the map in the top row above induces the map in the top row of (2.P.10)(i).). This completes the
proof of (i).

To obtain the commutativity of the square (i)’ we proceed as follows. Let k; : Y3 =Y NYs — Y,
i = 1,2, denote the obvious closed immersions. Now observe that the square in (i)’ factors as the
composition of the squares:

Hy, (X1; RfF Po) @ Hy (Ya; Lo) —— H (X1; RS9 Po) ® Hy (Ya; k3 (Lo))
f1*®idl lfn@id
HE (Y15 Po) ® H (Yo; Lo) —— Hi(Ya; Po) ® H (Ys;k3(Lo))

and
Wy, (Xy; (RFE) Po) @ My (Vs k3 (Lo)) — He (X153 (RFE) Po)) @ s (X1 0 X3 (£65)* (k3 (Lo))) —= F (X1 N X3 (RFG,)' L)

f1*®idl/ f1,2*l

H; (Y15 Fo) © HE; (Ya; k3 (Lo)) Hz (Ys; Lg)

Therefore it suffices to obtain the commutativity of the bottom diagram; this follows from (i) by replacing
f (Y, L) by the induced map X1 — Y7 (Y1, k1.k3(Lo) respectively ). Observe that the pairing PQL — L'
is now replaced by the pairing Py ® k1.k3(Lo) — k1. (Lg).

The diagrams in (ii) and (ii)’ are obtained by an argument entirely similar to that for (i) by considering
the pull-back square
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EGXX gEGx(XxX) ><zdEGx(YxX)

fal z'dfol

EGxXY A EGx(Y xY)
G G

O

(2.P.10)’ Projection formula in equivariant K-homology. Assume that in addition to the hypotheses
of (2.P.10)(i) that X — X, Y — Y are G-equivariant closed immersions into smooth G-quasi-projective
varieties and the map f extends to a G-equivariant map f : X 5 Y. Let §: Y — Z denote a G-
equivariant map between smooth G-quasi-projective varieties, Z C Z a G stable closed sub-variety. Let
g:§ Y(Z) — Z be the induced map. Now one obtains the commutative square:

Kg‘,X(X) ® Kg’,Z(Z) —>Kg,X(X) ® KOG f 1('_1(Z))( )HKG an l(g_l(Z))(X)

fs ®idl f*l

Kg',y(f/) ® Kg',z(Z) P Kg,Yng—l(z) (Y)

and similar commutative squares in equivariant Atiyah-Segal K-theory as well as in equivariant topo-

logical K-theory (with respect to a maximal compact subgroup of G). The map f* is the obvious map
induced by f. Here the first map in the top row is id ® f* o §*. (Since all the varieties are G-quasi-
projective, the map f factors as the composition X — ¥ x P (where P™ is a large projective space on
which G acts linearly) and the projection Y x P* — Y. Therefore it is clear the map f has finite tor
dimension so that the map f* is defined. A similar conclusion holds for the map g.) The commutative
square in equivariant algebraic K-theory is clear by the familiar projection formula. To obtain the corre-
sponding results in the other K-theories, one may use the factorization of f into a G-equivariant closed
immersion followed by a projection P™ x Y, where G acts linearly on P™ and by the diagonal action on
the product P” x Y. (Or one may view these as generalized (equivariant) homology theories and invoke
the projection formulae in such settings.)

Alternate form: Finally observe that one also obtains a similar commutative diagram when the

pairings: K¢ ,(Z) ® K& x(X) — K2, Xnf-1(5 _1(2))(X) and K¢ 7(Z) ® K¢ y(Y) = K¢ yrg-1(7)(Y)

are used. The corresponding diagram provides the equality: (¢* ®id)o (id® f,) = fuo((f*0§*) ®id). O
(2.P.11) Corollary. Assume the hypotheses of (2.P.10)(i). Let L € Dg’G(Y; E).

(i). Now the map
fe  HG (X5 (RFC)'L) — Hg (Y5 L)
is a map of modules over Hf(Y; E) and hence over H*(B(G); E).

(ii). Assume in addition to the hypotheses of (2.P.10)(i) that X is smooth. Now the map f, :
M, (X; (RfC)'L) — | (Y; L) has the property that fuo(f*(a)) = fu(1).a, a e ]HIG(Y L), f*(a) = the
image of f*(a) € H(X; (f9)*(L)) in H (X; (Rf%)'(L)) and 1 € HE(X; E) is a generator of HA(X
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(iii). Assume in addition to the hypotheses of (2.P.10)(i) that Y = Spec C and X = B where B
is a flag-manifold (i.e.. the variety of Borel subgroups associated to a complex reductive group G or
the variety of parabolic subgroups of a complex reductive group G, all conjugate to a given parabolic
subgroup) and G is a closed subgroup of G. Assume further that L e D,f’G(Y; Q). In this case let
fe : W5 (X; R(F9)' L) ~ H (X (f9)*L) — H (Y L) be the map defined by fi(a) = fu(Tdx ® @). Now
f« 0 f* = the identity.

Proof. (i) follows from (2.P.10)(ii) by taking P = E and L' = L. To obtain (ii) take P = Dg and
L' = L in (2.P.10)(i). Since X is smooth, (Rf%)'(Dg) ~ Dr ~ E[2d], where d is the complex dimension
of X and E denotes the obvious constant sheaf on X. Therefore HY (X; (Rf%)'(Dg)) = HY(X; E).
Finally (iii) follows from (ii) (for the map f.) by observing that in this case f.(1) = fu(Tdx ® 1) =
1. Observe that the class 1 is the equivariant Chern-character of the trivial line bundle and that if
fe : Ko(Mod€, (X)) — Ko(ModS

R o 1 (Y)) is the obvious map on the Grothendieck groups of equivariant

coherent sheaves, f,(the trivial line bundle) = 1 by Borel-Weil-Bott as observed for example in [T-2] p.
594. Now the equivariant Riemann-Roch theorem in (2.12) shows f.(1) = 1. This completes the proof
of (iii). O

We end this section by quoting the equivariant Riemann-Roch theorem from [J-7] section 4.

Let G denote a complex linear algebraic group acting on a G-quasi-projective variety Z and let M
denote a maximal compact subgroup of G. Let Z — Z denote a G-equivariant closed immersion into a
smooth G-quasi-projective variety. It is shown in [J-7] section 4, that there exist natural transformations:

K9(2) & KM (Z) and mo(K ¥ 5(2)) 2 KM o(2) = KS, o(Z).

top,0

where K%(Z) is the spectrum of the symmetric monoidal category of G-equivariant coherent sheaves
on Z and K% 4(Z) is the Atiyah-Segal K-homology spectrum defined in [J-7] section 3. K} _(Z)
(K, .(Z)) is the M-equivariant (G-equivariant) topological K-theory of Z. It is also shown in [J-6]
(2.7) and section 3 that there exists a G-equivariant Chern-character ch® : KG, (Z) — HE(Z; Q)
and a Todd-homomorphism 7% : K ((Z) — HS(Z; Q) defined by 7% () = (T'd;|Z) ® ch®(a), where
o € K o(Z) and Tdy|Z is the restriction of the G-equivariant Todd-class of Z to Z. (Recall that

HZ(Z;Q = HY(Z;Q).)

(2.12) Equivariant Riemann-Roch (See [J-7] (4.2) or [T-2].) Assume that f : X — Y is a
G-equivariant proper map between two (G-quasi-projective varieties. In this case one obtains the com-
mutative diagram

S (X) — HY(X;Q)

f*l lf* f*l lf*

ro(KO(Y)) "2 ro(KM (V) —E— KE (V) ——— HE(YV;Q)

mo(KE(X)) =2 ro(KYg(X)) —2— K

Here the last vertical map is the one induced by the trace map RfCRf G!(]D)@) — Dg (see (2.P.6)) where
Dy is the dualizing complex for the category D,f’G(Y; Q).
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3. Convolution algebras via equivariant K-homology and homology: associativity of
convolution.

o
(3.1) Let G denote a complex reductive group and let f : U — U denote a proper G-equivariant map
o

of G-quasi-projective varieties. Assume further that U is smooth.

The following are typical examples of this set-up. The first two examples lead to Hecke algebras;
the third seems to be an un-explored new situation and the fourth is closely related to affine quantum
universal enveloping algebras of type A,. (One may show readily that all varieties are in fact G-quasi-
projective.)

[
i). U = B = the variety of all Borel subgroups (or the variety of all parabolic subgroups conjugate to
a fixed parabolic subgroup P) of a complex reductive group G, U = Spec C, G = a closed subgroup of
G and f = the obvious map.

ii). G = a complex reductive group, U = a G-stable open sub-variety of & (=the unipotent variety

of G), B = the variety of all Borel subgroups of G, I(} =Ay ={(u,B)lue UNB,B € B}, G = (a closed
subgroup of G) x C* and f = pu: Ay — U the map sending (u, B) — u. The action of G on U and on

U is described in more detail in (5.1.2) and (5.1.3).

iii) G = a complex reductive group, P a fixed parabolic subgroup of G, i = the unipotent variety of
G, P = the partial desingularization of i« ={(x, P')|z € YN P', P'= a parabolic subgroup conjugate to
P}. Now the variety A (= the Springer desingularization of &/) maps naturally onto UP. Let this map
be denoted 7. Let U = a G-stable open sub-variety of U¥, U= n~(U), f = the obvious map induced
by n and G=(a closed subgroup of G) x C* with the actions as in (5.1.2) and (5.1.3).

iv). (See [G-V].) Let d denote an integer > 1 and let § = the set of all n-step flags in C? of the form
F=0=FRCF C..CF,=C%. Let M = {(F,z) € § x gla(C)|z(F;) C Fi_1, i = 1,2,...,n}
and N= the variety of all C-linear maps = : C¢ — C? so that ™ = 0. The group GL(C?) x C* acts
on N and M as in (5.1.2) and (5.1.3). We let f denote the obvious projection to the second factor, U

= any GL(C?) x C*-stable open sub-variety of N and U= fYU). (Observe that M is smooth and f
is proper.) We may let G = (any closed subgroup of GL(C%)) x C*. (See [G-V] or section 5 for more
details.)

One may generalize the above set-up in (3.1) as follows. Let s € G denote a fixed semi-simple element
[

o
so that the fixed-point schemes U*® and (U)® are non-empty. Now one may replace f : U — U by the

0

map f*: (U)® — U® and G by Zg(s). We will refer to these cases as (3.1)(i)s, (3.1)(41)s, (3.1)(44i)s and
(3.1)(iv)s.

00 o o
3.2.1) Assume the situation in (3.1). Let U = UxU. This is a G-stable subscheme of the smooth
U

00

[ [ [ o [ [ o [
G-variety U x U where G acts diagonally on the variety U x U. Let i : U = U l>; U — U x U denote the

[ o [ [ [
obvious closed immersion. Let p; ; : U x U x U — U x U denote the projection to the (i, j)-th factor
oo [e]e]
for (4,7) = (1,2), (i,5) = (2,3) and (i,5) = (1,3). Let p; j= the induced projection p;]l(U) — U; we let

000
Q5 ot U — p;’Jl(U) We let ﬁi,j Zﬁi,j O Q5.
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(3.2.2) Now observe that i, ;(ﬁ) C (j' X (j' X [j’ is a G-stable closed subscheme when G acts diagonally
00

000 00 o [ o
on the varieties considered. Now U = p; 5(U) N py. é(U ) = UxUxU. The properness of f, implies, by
bl b U U

000 00

base-change that the projection p13: U — U is also proper.

We recall the following terminology: If Z is a G-variety with a closed G-equivariant immersion Z — Z
into a smooth G-variety, we let K§(Z) = mo(K9(Z2)), K& 4(Z) = 70(Kg,z(Z)). Now one first defines
a convolution-product

(323) %: KO (UxU)@K° (U xU) = K .(U x U)
G,U G, U G, U

For this one begins with the pairing:

P12®P2s, g0 ((o]xl}xlof)@Ko ([(}x[o]x((})

o [ [ o
K° ,(UxU)®K° _(UxU) o0
G,p; 5(U)

a,U a,U G,p73(U)

— K° OOO(IOJXI(}XIOJ)

)

000 [e]e] [
The map py 3. : K§(U) — K§(U) induces by Poincaré-Lefschetz-duality a map py 3. : K® ,,.(U x
G, U

)

U x [0]) — Kg m,((l} X [(}) The composition of the above maps defines the convolution in (3.2.3)’.
U

Making use of Poincaré-Lefschetz-duality, the convolution in (3.2.3)’ induces the convolution:

00 00 oo

(3.2.3) x: K§(U) @ K§ (U) — K§(U).
(Compare [C-G] (4.2.8) and section 2.5.) This algebra will be denoted Hy, henceforth.

Let M denote a maximal compact subgroup of G. If Z is a G-variety with a closed G-equivariant
immersion Z — Z into a smooth G-variety, we let K} (Z) = m(K}4(Z)) and Kf,l"%o(Z) =
7o (K 1’(‘4%(2)) Kﬁf}f”zo (Z) will denote the M-equivariant topological K-theory of Z with supports in
Z. Now one may define convolution-products:

(3.2.4) % : KAS0(U x U) @ KASO(U x U) — KU x U) and
M, U M,U M, U

00 00 00

(3.2.4) *: K%S,O(U) ® K%S,O(U) — K%S,O(U)-

The convolution-algebra in (3.2.4) will be denoted Hyz 4.s. Similarly one defines convolution-products

(3.2.5) % : KP2(U x U) @ K*P2(U x U) = K*P(U x U) and

G,U G,U G,U
00 [e]e) 00
(3.2.5) *: Kgpyo(U) Kgp’O(U) — Kgpyo(U).

The convolution-algebra in (3.2.5) will be denoted Hz ;,p.

Next we consider a similar operation in equivariant homology. For this we will define a map p; 3« :
[ [ o [ [
H* ., (UxUxU; Q) — H* ,,(UxU; Q) so as to make the square
G, U a,U

) )
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H* W,([j'x[o]x(of;@) pl—3> H* oa(((}x ((};Q)
G,U G, U

(326) PiLJ( JVPfL
HE(U;Q 5 HOU;Q)
Now one defines a convolution
3.27) %: H* (UxU; Q @ H* ..(UxU; Q) — H* ..(UxU; Q)
G, U G, U G,U
as in (3.2.3)’. Making use of the Poincaré-Lefschetz-duality, this also defines a convolution:
a 00 a 00 a 00
(32.7) x: HZ(U; Q @ HY(U; Q — HI(U; Q)
00 00
(One may also observe the isomorphism: HE(U; Q) = HM(U; Q).) This convolution algebra will be

denoted Hg g,. If H is a closed subgroup of G, one may define a similar convolution product when
HS(U; Q) is replaced by HS(GxU); Q).
H

Next we will define natural transformations

(3.2.8) BR': Kt"';;?(tof X IOJ) — H* w(lof X IOJ; Q) and
G, U G, U

(3.2.8) BR: KE,(U) —» HS(U; Q)

following ([C-G] (4.10.13).) If a € H&((o], Q) and B € HE((;'; Q) we will let a x 8 denote their product

in Hg([j' X Ij’ ; Q). We will also let Td?, i = 1,2,3, denote the G-equivariant Todd-classes of the i-th

factor U in U x U x U. We will let ¢h© : Kto’j,;o([o] X (3') — H; OG(IOJ X [3'; Q) denote the equivariant local
G U

) )
00

o [
chern-character. (See [J-7] for details.) Let a € K*2:2(U x U) and € K¢, o(U). Now we will let

)

BR'(a) = (1 x Td§') Uch%(a) and BR(8) = P — L(BR'(P — L 1(8)))
where P — L denotes the appropriate Poincaré-Lefschetz duality isomorphism.

(3.3) Theorem. Bivariant form of equivariant Riemann-Roch (i). The natural transformation p (B)
considered in (2.12) maps the convolution algebra in (3.2.3) to the convolution algebra in (3.2.4) (the
convolution algebra in (3.2.4) to the convolution algebra in (3.2.5), respectively ).

(ii) The maps BR' and BR preserve the convolution-product.

Proof. (i) These follow immediately from the equivariant Riemann-Roch theorem in (2.12) since the above
natural transformations clearly commute with inverse-images. One could also consult [T-2] which has
similar equivariant Riemann-Roch theorems. (Such equivariant Riemann-Roch theorems are implicitly
assumed in the literature to show the convolution on affine Hecke algebras is compatible with the
convolution on the corresponding graded Hecke algebras.)

(ii) Clearly it suffices to prove that BR' preserves the convolution-product. This follows along the
lines of [C-G] (4.10.13) making use of the equivariant Riemann-Roch (2.12). However we will give an

o o
argument for the sake of completeness. Let a, o' € K t"IZ;O(U x U). Now
G,U

)

BR'(a) * BR'(a') = P1,3+(p] »(BR'(@)) U p5 3(BR'(2)))
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(pf2((1 x TdS) U ch®(a)) Ups 5((1 x Td§) U ch(a')))
3.((1 x Td§ x TdS) U (p} ..
3x(
(

2(ch(@)) U p; 5(ch(a))))
(1 x Td§ x Td§') U (ch®(pi 5 (@) U p3 5())))

ﬁl,B*
= pra((p 3(Tdf x 1)71) U(Tdf x Td§ x Td§') U ch®(pf 5(@) U pj 3(a)))
Tdf x 1)71 U prau((Tdf x Td§ x Td§') U ch® (p 5 (@) @ p3 5(')))

Tdf x 1)~" U (Tdf x Td§') U ch®(pr,3.(p1 2 (@) ® p5 3(a)))

= (1 % Td§) U chS (1 0. (p} () © p3 (') = BR!(a x ).

The third equality from the end is by the equivariant Riemann-Roch and the one immediately before

,3

=(
=(

that is by the projection formula. The rest are clear. [

Next we proceed to show the associativity of the convolution operation so that we, in fact, obtain
associative algebras. We will consider in detail only the convolution operation in (3.2.3). (It is hoped
that the proof of (3.4) will provide better understanding of the proof of Theorem (4.6) (see especially
step 4) in the next section.)

(3.4) Theorem. Under the convolution product in (3.2.3), one obtains the commutativity of the
square:

(K$(U) ® K§(U) ® K§(U) — K (U) ® K§ (U)

|

oo

(3.4x%) & K(?(U)

|

K§(U) & (K§(U) ® K§'(U) — K§ (U) ® K (U)

Proof. In addition to the terminology in (3.2.1) we will adopt the following. For each integer i = 1,2, 3,4,
o o o
we let U; = U indexed by i. For each pair (,5), 1 < i < j < 4, we let U; ; denote the product of 2
factors each isomorphic to U and with the factors indexed by ¢ and j. We let U; ; = U;xU;. Let Ujjy,
U

1 <4< j<k<4denote the product of 3 factors each isomorphic to U, with each of the factors indexed
by i, j and k. We will let U 1,2,3,4 denote the product of four factors indexed by 1, 2, 3 and 4 with each
factor isomorphic to U Let p; ; : U ijk — U i,; denote the projection to the (4, j)-th factor.

Now we consider that the composition of the maps in the bottom row and the bottom half of the

o o o o
right column. Here we will use the following convention: p; o : U124 — Ui2, P23 : Uazs — Usy
000

o o 00
and p3 4 : Uz 34 — Usy4 are projections to the appropriate factors. We let po 4 : U — U denote the

000

o o o o
obvious map induced by the composition U — Us 34 LEEN Uss. Welet ppg: Uipa — Us s denote

00 00
the projection to the factors 2 and 4; recall P24 : p;, i(U ) — U denotes the map induced by ps4. Now
the composition of the maps in the bottom row and the bottom half of the right column is given by the
composition of the following maps:
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K, (Uy2)®(K®., (Uss)®K°, (U

G7U1’2( 2) ® ( G’Um( 2,3) G’U“( 3,4))

idRDe 2 QP ] ] ]

— 2B K L, (Ur2) ® (KO (Uz,3,4) ® K° (Us,3.4))

G,U1,2 G.p35(U2,3) G.p5.4(Us,a)

0 o 0 o id®ﬁ2,4* 0 o 0 o
= K° ,(U12)®K° ... (U234 ——K°,, (Ui2)®K?,, (Us4)
G,U G,U 23,4 G,U1,2 G,Uz2,4
- Y
P RO, (Ui,2) ® K°

o (Upaa) 2% g0 () 9K . (U
G,U1)2 G,ﬁ;’i(U%‘l)( 1,2 4) ( 1,2 4) 1 ( 1,2,4)

G,p75(U1,2) G.pz4(Us,a)

— K ooo (&124)MK0 o0 ((OJ14)
G,U 1,24 - G,U1,4 ’

o 0
For1<i<j<k<4,letpijr:Ui2ss— U;jr denote the projection to the factors indexed by 4,
[ o [

000 0 0 0 o
j and k. We let U ;j denote the obvious closed subscheme U;U;U of UxU xU = Uj; ;. Welet

000 000 0000

o o
Dijk :pi_,jl,k( Uijr) = Ui,k and p; j, = the composition of U = UxU

o [ 000

U— pz_’;’k( Ui k) with
D jik-
Now (2.P.7)’ applied to the cartesian square

000 000

prsa(U) =25 U

131,2,41 132,4l
00 5. 00
poi(U) — U
(with f: X — Y equal to the map pa,4 and g : Y' — Y equal to the map p 4) shows: (id®p5 4) o (id®
P2,4x) = (id ® P1,2,44) 0 (id ®;5§,374). (Observe that P2 4 and Pa 34 are smooth while po 4 and Py 24 are
proper.)

Next we apply (the alternate form of) (2.P.10)’ with f = p12.4 : pZT,éA(OIOJO) — p;,i(?})), f=pioa:
[ o 00 00 o [ [

U1,2,3,4 — U1,2,4, g = ﬁl,z pl_é(U) — U and g = P12 U1,2,4 — U x U and the pairings: K%,Z(Z) ®
K¢ x(X) — K&an-_l(g_l(z))(X) and K¢ ,(Z) @ K¢ (V) — K&Ymg_l(z)(Y) and the map in the
left-most-column id ® f.. This shows that the composition:

o o 0 p1 o®id)o(id®pP1,2,4+ 0
KOGO’O(U x U) QK . (U1,2,34)® (Fi 2 ®id)old p124l} K&0 (U1,2,4)
U

-1
P3,3,4( Uiza

factors as

Go,P o G,0 o D1,2,459(P] 2, 40P »®id) G,0 o
K,"(UxU)® K 7 eos (U1,2,3,4)® — K., (U1,2,4)
U Pa3,4(U Uiz,

As a consequence one concludes that the composition of the maps in the top row and the top half of
the right column of the square in (3.4) is given by the composition:

~x ~x ~x ~x ~x ~x
D1,2,40P1,2®D2 3, 40P2 3@D2 3.4 ®P3,4\
7

K50 (U1p) @ K30 (Uas) ® K‘ic}i’o (Us,a)

Ui, Uz, 3,4
G,0 2 G,0 ’ G,0 g
= K7 (U234 @K o (Uips) @K .. (Uizz4)
1’1,2,3(1’1,2((]1,2)) P1,2,3(1’2,3(U2,3)) P1,3,4(P3,4(U3,4))
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o 7 5 0
— Kg;g(Ul,z,sA) PO, KGO (U1,4)
U Ui,a
A similar analysis shows that the composition of the bottom row and the right column of the square
in (3.4) is given by the composition:

- R R -
P1,2,3°P1,2®P1 2,3°P2,3®P1,3,4®P3,4
7

(2} o [
KGO U12) ® KG° (Ua3) ® K;’O (Us,a)

Ui,2 Uaz,3 3,4

[

(o) o
K%° (Uip34) ® K&° (U1,2,34) ® K° (U1,2,3,4)

Ly e Ly eo Ly e
P1,2,4(P1,2(U1,2)) P2,3,4(P2,3(Uz2,3)) P2,3,4(P5,4(Us,4))
G,0 /7] P1,4+ 9P1,3,4x G0 2
— ®Ko?}m(U1,2,3,4) —_— Kc[:]n, (U1,4)
1,4
Clearly these compositions are the same since pi 2 0 p1,2,3 = P1,2 © P1,2,4, P2,3 © P1,2,3 = P2,3 © P23 4,

P3,4°P134 =P34°p234and P1 40P 34=P14°P124. U

4. Construction of modules over convolution algebras from equivariant derived cate-
gories.

In this section, which forms the heart of the paper, we provide a general construction of modules over
convolution algebras (as in (3.2.7)) starting with an appropriate equivariant derived category. We begin
with a few technical lemmas aimed at constructing certain pairings in equivariant hypercohomology.
We will assume E = Q or C throughout the rest of the paper. We will let G denote a fixed linear
algebraic group acting on the G-quasi-projective varieties considered in this section. G will denote a
closed algebraic subgroup or a compact subgroup of G. Throughout this section we will let the map
EGéX — EGéY induced by any G-equivariant map f: X =Y, (for any two G-spaces X andY ), be

denoted merely by f for the most part -i.e. we omit the superscript G.
(4.1) Lemma. Let

z 2,y

X 25 X
denote a cartesian square of G-equivariant closed immersions of G-quasi-projective varieties. Let ¢ =
iX Oily Ziyoil)(.

(i) Let F, L € Dy°(X; E). Now one obtains the pairing ix.Rix'F ® iv.Riy'L — i.Ri'(F ® L) —
F ® L which induces the pairing:

H*G,X(XQ F) ®HZ',Y(X; L)— HZ‘,Z(XE F®L)

(i) If F e D{(X; E) and L' € Dy (Y; E), one obtains the pairing ix. Rix'F @iy, L' — i, Ri'(F ®
iy«L') which induces the pairing:

Hy x (X5 F) © Hy y (X5 iy L) = Hy 5 (X; F ®iy.L')

(iii) Let F' € DY°(X; E) and L' ¢ DY%(Y'; E). Now one obtains the pairing:
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ix+F' Qiye L' = i Ri'(ixF' @ iy L').

Proof. Observe that the support of i x,Ri x'F ®iy«Riy'L is contained in Z. Therefore the natural map
ixsRix'F ®iy.Riy'L — F® L factors through i.Ri'(F ® L). On taking equivariant hypercohomology,
the above pairing of complexes of sheaves clearly induces the given pairing. This proves (i). The proofs
of (ii) and (iii) are similar. O

Take F = L = E = the obvious constant sheaf on X. We will assume henceforth that X is also
smooth. Now lemma (4.1) provides the pairing: ix.Ri'y (E) ® iv.Riy(E) — i.Ri'(E). Since X is
smooth, one may identify £ with ID)X = the dualizing complex for the category D}’ G(X E) modulo an
even-dimensional shift. Therefore the above pairing may be identified with a pairing: ix.Dp Qiy.DY —
i*Dg. This provides the pairing;:

(4.2) H (X; DE) @ Hy (Y; DY) — Hg (Z; DE) (e Hy x (X; E) 9 H y (X; E) — Hy £ (X; E))

on taking equivariant hypercohomology.

(4.3) Lemma. Consider a commutative triangle of G-equivariant maps between G-quasi-projective
varieties:

X\_/Y

where ¢ is an isomorphism. Now one obtains the following natural identifications:
(i) Rg' = ¢.Rf" as functors Di"°(S; E) — Dy (X; E)
(ii) Rf«Rf' = Rg.Rg' as functors D{"%(S; E) — D{%(S; E) and hence
(iif) Hy (X; Rf'K) = H (Y3 Rg'K), K e Dy°(S; E).

(iv) If H is a closed subgroup of G, the above identifications are compatible with the restriction from
G to H.

Proof. Since ¢ is an isomorphism, it is smooth and one may identify ¢* with R¢'. Moreover, id = ¢,¢* =
#.R¢'. The commutativity of the above triangle shows Rf' = R¢' o Rg'. Now apply ¢, to both sides
to obtain (i). Next observe Rf, = Rg. o ¢«; therefore, on applying Rg. to both sides of (i) we obtain
Rg.Rg' = Rg«¢.Rf' = Rf.Rf". This proves (ii). Finally take G-equivariant hypercohomology of S and
the canonical identifications HY, (X; Rf'K) = Hy, (S; Rf.Rf'K) and HY (Y; Rg'K) = H (S; Rg.Rg'K)
to obtain (iii). Let 7 : EH I>§S — EG éS denote the obvious map. Now, by (A.2) (in the appendix),
*RfSRfG (K) ~ RFERFH (i*K), where K e DO (S; E) and i* RgS RgC' (K) ~ RgH RgH'(i “K). This
proves (iii). Now i,i* RfSRfC (K) ~ iy (RFERfH' (i*(K))) and i,i* RgGRgC (K) ~ i, RgH Rg"' (i*(K))
by base-change. Take G-equivariant hypercohomology of S with respect to the above complexes to see
that the identification in (iii) is compatible with restriction to the sub-group H. O

We apply the above lemma as follows. For the remainder of this section we will assume the situation
of (3. 1) and the termmology in (3.2.1) and the proof of (3.4). For (i,7) = (1,2), = (2,3) or = (1,3), let

bij U 1,2,3 = U 1,2,3 denote the permutation that makes the following diagram commutative:
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U big U
1,3 lai,j
1 [e]o) _1 00
p1,3( ) @i,j Pij )

Uiz b7 Uiz
P1,3 Pij
o o
UxU
1 [e]e] 1 [e]e] 1 [e]e] 1 oo 1 00
The morphism ¢;,; induces isomorphisms: p; 3(U) — p; ; (U) as well as p; 5(U) N p; 3(U) = p1(U) N
00 [e]e] 00 000

2% 3(U). (Observe that pl_é(U ) N ps, 3(U) = U.) These induced isomorphisms will also be denoted ¢; ;.

For example, if (4,j) = (2,3), ¢;; is the permutation that interchanges the first and second factor in
o 000 000

Ui,2,3. Since ¢;; (on U) is an automorphism, Rd)i’j = ¢} ; is an automorphism of DE’G( U; E) with
inverse given by ¢; j«. It follows that

(4.3.2) Rp} 3 = Re; ; o Rp; ; and ¢;,j. R 5 = Rp; ;-

(4.3.3) Throughout the rest of this section we will let E denote the obvious constant sheaf on UxU
o
and D = Ri‘'(E). d will denote dimc(U).

(4.4)Proposition. Assume the above situation. Let K e D' (((JJO, E) (= D;:F(OUO; E)).

000

(i) Now there exists a canonical identification: H, (OIOJO; Rp; ;K) =H5 (U ; Rp; 3K).

(ii) Under the same hypotheses, there exists a pairing;:
00 oo 13;’2@)13;’3 " _1,90 o " _1,9 -
Hg; (U; Dg) ® Hy, (U; K) HG(pl,z(U)§ pl,ZDE) ® HG(P2,3(U)§ p2’3(K))
000 X 1’51 34 00

— H5(U; Bpy 3 K) — Hg (U; K)

(iii) In case K € Dg:f(ﬁ; E), there exists a similar pairing:

Hg (U; K) @ H (U; De) — Hg (U; K)
Proof. (i) follows immediately from (4.3). The proof of (iii) is entirely similar to that of (ii) and is

~ o 00 00 000

skipped. To obtain (ii) we apply (4.1) with X = U; 53, X = ﬁ;é(U), Y = ﬁl_é(U) and Z = U. Let

o _ o
i;,5 : Us; = U, j denote the obvious closed immersion and let 4; ; p;]l(U) — Uy,2,3 denote the obvious

000 o
induced closed immersions for (z,5) = (1,2) and = (2,3). Let 41,23 : U — Ui 2,3 denote the composite
closed immersion. Therefore lemma, (4.1)(i) provides the pairing:

(4.4.1) Hy (U; Dp) @ Hy (U; K) = iy ?},(f} xU; E)® H ?},(f} x U; i, K)
— (U1,2,3; p1oE) @ . (U1,2,3; p33(ixK))

Gpi2(U) G.py 3 (U)

26



000

= W oo (U3 P 2(B) @ P35 (i (K))) = Hg (U5 Rii 5 5p3 5(ix (K)))

= Hg (U; Ri!1,2,352,3*153,3K) = Hg (U; Ra!2,3R15'2,3K[_2d])
=M (U; RpyzK([—-2d))

00 [ o
(Recall that p; o is smooth and the map i denotes the closed immersion U — U x U. Therefore

D5 3K ~ Rp 3 K[—2d]. Recall also that as g : T - 2 é(?}) is the obvious closed immersion and that
P2,3 = Pas © az3. This provides the last equality.) Now (i) shows the last term may be identified

000 000
with H; (U ; Rp; 3K[—2d]). Therefore we will compose the above pairing with the map p13. : H5 (U ;
Rpy s K[—2d]) — H, (ﬁ, K[—2d)]). Finally we may ignore the shift [—2d] since Hg(?]o, K[—-2d]) = H, (ﬁ,
K). O

(4.4)’Definition. The pairing in (4.4)(ii) ((4.4)(iii)) defines the convolution product:

+: Wy, (U D) @ By, (U K) — By (U5 K) (+: W (U3 K) @ Wy (U D) — Wiy (U; K), respectively )
For the rest of the paper we will consider explicitly only the first product; the details for the second one
are entirely similar.

(4.4)” Assume that H is a closed subgroup of G. Now one may define similar convolution products:
H—H‘g((GEOUo); Dg) ® Hg((GE?}’); K) = H—Hg((GEOUO); K),if K € D;*G((Géﬁ); E). For this, it suffices to
replace the diagram (4.3.1) where each term « has been replaced by the corresponding term Gxa. One
may check readily that (4.4) carries over verbatim to the new setting. "

(4.5) Theorem. The above pairing has the following properties:

(i) If H is a closed subgroup of G, the pairing in (4.4)’ is compatible with the restriction map to the

equivariant hypercohomology with respect to H. Similarly if
H — &

Lo

H— G
is a commutative diagram where the maps are all inclusions of closed subgroups, the pairing in (4.4)” is

compatible with the restriction H, (G XOUO); )— HE, (G' % ﬁ), ).
H H

(ii) The pairing in (4.4)’ is natural in K. i.e. if K’ %S Kisa map in DZ’G (ﬁ, E), the corresponding
induced map HF, (;Jg, K') — H, (ﬁ, K) is compatible with the pairings in (4.4)’. (A similar conclusion
holds for the pairing in (4.4)”.)

00

(iii) Assume that H is a closed normal subgroup of G with finite index and that K e D,f’G’G/ U;
E). Leti: EH});X — EGéX denote the obvious map. Now the action of G/H provided by (2.P.4) on

00
L}, (U; i*K) commutes with the pairings in (4.4)’.

Proof. To prove (i) ((ii)) we need to go back and show that each step in the definition of the convolution
product is compatible with the restriction to a closed subgroup (the map K’ — K, respectively ). One
may observe readily that the pairing:
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0o oo 5*’ ®13*’ LY - . 4 00 -
(4.5.1) H (U; Dg) ® Hy (U; K) —2—2 H, (1 5(U); 5} 2De) @ Hy, (3 3(U); 55 3(K))

- H5(U; Rﬁ!2,3K)

is compatible with restriction to a closed subgroup H. So is the identification
(4.5.2) Hg, (U 5 Rph 3K) = Hg (U 5 Rpi 5K)

by (4.3)(iv). Finally the map p1 3. : HY (0(3'0; Rp; 3 K) — H, (ﬁ, K) is also compatible with the restriction
to a subgroup H as (2.P.7)(iii) shows. This completes the proof of the first assertion in (i). The proof
of the second assertion in (i) is entirely similar.

To prove (ii) one observes that the pairing in (4.5.1) and the identification in (4.5.2) are compatible

with the map K' — K. So is the map p1 3« : H&(OIOJO; Rﬁ!mK) — Hg(([)/g, K) by the naturality of
00 00
the trace maps in (1.4.3)(iii). Now consider the last assertion. Let EG é(G X U) S EG x U denote the
_ 00 [e]e]
obvious map. Let § ¢ G = G/H denote a fixed element, let T : EGé(G?IU) — EGé(GﬁU) denote
the induced map and let 7*K — (Tj).(7*K) be the induced map as in (2.P.4). Now (4.5)(ii) shows the
pairing in (4.4)’ commutes with the corresponding induced map
00 00 00
T, + B (BG (G xD); m*(K)) = H (BGX(GxD); Ty (K)) = iy (BGx (Gx s 7 (K)

One may now show, using the second assertion in (4.5)(i) applied to the inclusion of the pairs (H C
H) — (H C G), that the identifications

H, (U; i*K) =~ H*(EGE(GE"(}’); 7*K) and

Hy (U; i*K) ~ iy (U; i*Tj K) ~ H*(EGé(Gzﬁ); Ty (K))

are provided by the corresponding restriction maps and therefore are compatible with the pairing in
(44)y. O

(4.6 ) Theorem. The first pairing in (4.4)’ provides a commutative diagram:

(Hy (U3 Dp) @ B (U; Dy)) @ H, (U; K) — Wy, (U; D) @ B (U; K)

l

HE (U; K)

|

Hy, (U; De) @ (Hy (U; De) @ B (U; K)) — H (U; Dg) © H (U; K)

(4.6%)

IR

00
The second pairing in (4.4)" provides a similar commutative diagram with H, (U; K) in the left-most
position.

Proof. The proof of this theorem follows along the lines of (3.4) showing the associativity of the convo-
lution product in (3.2.3). (See Step 4.) Throughout we will continue to follow the notation adopted in
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the proof of (3.4) and in the discussion above. The reader is advised to first look at step 4 of the proof
for an overall view of the proof before returning to the details in steps 1 through 3.

Step 1 We begin by considering the composition of the maps in the bottom row and the bottom half
of the right-most column. This is clearly the composition of the following maps:

Hy (U; D) © Hy (U Dp)) @ Hy (U3 K) > B (U x U B) o B o (U x U3 B) 0 B o (U x U i K)

1d®py 3 Py 0 0 0 .
(4.6.1) — 224 pr (U x U ; E) @ H oo (U234 ;p3sE) @M ?]o)(U2,3,4; D3 4(13,44 (K)))

%k
o
G.U Gipy, 3(U) G7P3_,4(

(462) | ..(UxU; E)o 1 oo (Usyaa ; p33(E) ® p3 4(i3,44K))

s

(4.6.3) S H (o (UXU 5 B) @ Hy (Ui Rpy JK[—2d])

= ;;(U x U ; BE) @ Hy (U 2,345 Rph 4K [—2d))

(4.6.4) B W (U U B) @ H (U K[=2d) 2 B o (Ux U5 E)OE o (U x Us i K[-2d))

G, U G, U
D1 2 ®P5
(465) 2B B (U105 p1a(E) OH, o, (Uro; 95 a(inan K[—2d)))
Gypl 2 (U) G7p2 4 U)

(166) 2 B oo (a5 71 (B) © 95 iz K[-2d]) 2 Hy (U1 0.5 Ry, o(K[-4d]))

000

= HE (U 1,2,4; Ry 4(K[—4d)))

P1,4x

(4.6.7) 2% By, (U7, K[~4d)).

00 000

[ [ [ [
(Here i;; : U;j — UZ- X Uj is the obvious closed immersion. U ;;, = UxUxU with the factors U
U u

indexed by i, j and k. The identifications HE(OIOJOQ,3,4;Rﬁ!3’4K[—2d]) = HZ;(O(‘}O2,3,4;Rﬁ!2,4K[—2dD in
(4.6.3) and H5(0&01,274;Rﬁ!2’4K[—4d]) = Hy, (05'0172,4; Rp; 4K[—4d]) in (4.6.6) follow from an application
of lemma (4.3). The first 2 in (4.6.6) and the first = in (4.6.3) follow from an identification as in (4.4.1).)

Step 2. Here we will show that the composition of the maps in (4.6.1) through (4.6.5) may be replaced
by the following:
00 00 00
HE, (U; D) ® H; (U; Di)) ® H (U; K)

B .. (UxU; E)QH ..U x U; )®H*aa(UxUzK)
G,U G,U G,U

IR

o o o
H* oo (U245 01 2(E))RH* oo (Uaza; p33E)OH oo (U345 05 4(i3,44(K)))

P1,2®P5,38P3,4
%
G,p12(U) G,p3 3(U) Gyp3,4 (U)

(4.6.1)

o o
= e (Ui2,4;P12(E) @H oo (Uz,3,4; P5 3(E) @ p3 4(i3,4. K))

val_,2(U) G’ U2)3a4
(4.6.2) = H* (U1247P12( ))®HG(U234,RP34K[ 2d))
val 2(U)
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1d®Ps 3 4 000

(4.6.3) ——— " _ ., (U245 P} 2(E) @ M, (p33.4(U 2,3.4); P55 4 (RPS 4 K[—2d]))

G’Pl_,z(U)
(4:6.4) IHG,, it 0125 P12 (B)) © W (33 (005,0; B0 (e a K -2))
(4.6.5) = G o (U)(U1,2,4a 21 2( )) ® HG(p2 3, 4( U2 )3 4) Rpl ,2 4(172 4K[ Qd]))

(4.6.6) E0u2a e )(Ulzz,pm( ) ® B, (0 4(); (55,4 K[~2d))

Gal’1,2(U

0

o
—H . (Uioa; pro(E) @H o (Uroa; i a(inan(K[—2
G,p;;(U)( 1,2,45 Pi 2(E)) GJJQ_,};(U)( 1,2,4; P53 4 (02,44 (K[—2d])))

First we will show that the above maps are defined as stated. Observe the cartesian square

000 000

P2,3,4

2 é J(U) —= U
(4.6.8)131,2,{ pl

Pil) o U
(4.6.9) Observe that the maps P2 4 and hence p 3 4 are smooth and that d = the dimension of the fibers
of these maps. Now, it follows that, p5 5 4RP5 4(K) ~ Rp) 5 4Ry 4(K)[—2d] = R, 5 4RP} 4(K)[—2d] =
Rp} 5,405 4(K). One therefore obtains the identification in (4.6.5); it also shows that the last map
id ® P1,2,4% is defined. The isomorphism in (4.6.2)" is provided by an application of (4.1)(i) as in the
proof of (4.4.1). It remains to verify the identification in (4.6.4)’.

Now the assertion that the composition of the maps in (4.6.1) through (4.6.5) may be replaced by the
composition of the maps in (4.6.1)’ through (4.6.5)’ is equivalent to the commutativity of the diagram
(4.6.10) - see attached page 31.1.

The bottom square commutes by applying (2.P.7)(i) to the cartesian square in (4.6.8) with f : X — Y
(9 :Y" = Y) given by the map pa 4 (H2,4, respectively ). Observe that fs 4 and Ps 3,4 are smooth while P 4
and Py 2,4 are proper. (The same square provides the identification : pj 5 4Rph 4K = Rp} 5 485 4(K) as
discussed above. This defines the map p1 2,4« on the right.) To obtain the commutativity of the top square
(and the identification in (4.6.4)’) one argues as follows. One begins with the natural transformation
Rpy 4 — Rp» 34405 5 4 RPy 4. Now use the natural identification Rpj 4 = ¢3,44RP) 4 to identify this with:
¢3,4sRPY 4 — RPo3,44P5 3 403,44 RPs 4 —> RPo3,4403,4455 5 4 RPs 4 = 3,0 RP2,3,4:05 3.4 RDY 4. (Here 34
and 13 4 are the isomorphisms that make the diagram commute:

000 000

—_—
P234(U234) 3.4 p234(U234)
52,3,4l :52,3,4l/
000 000 )
Usgsa 3,4 Ussa
P2,4 3,4
00
U

Now apply Rps 4« to both sides to obtain the natural transformation:
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R4 Rp5 4 — Rp24xRp2,3,4555 3 4 RP5 4
In other words we have obtained the commutative square:

Rp3 avRpy 4K ——— Rp3 axRP2 34405 5 4 RPY 4 K

! !

Rps 4« Rps 4 K ——— Rps3 4« Rp2 344D 3 4 R 4 K

00
(The two vertical maps are the identity -see (4.3)(ii).) Taking equivariant hypercohomology on U, this
provides the top square in (4.6.10).

Step 8. Now we consider the composition of the maps (4.6.6) through (4.6.7). We will show the
existence of a commutative diagram (4.6.11) (see attached page 31.2), where the composition of the
maps in the bottom row and the bottom half of the right column will correspond to the composition of
the maps in (4.6.6) and (4.6.7).

The commutativity of the bottom square will follow from the projection formula (2.P.10)(ii’) applied

to the following situation. In (2.P.10)(ii’) take Y = [0J1,2,4, Y, = pf%(?}), Y, = p;i((ﬁ), X = (0]1,2,3,4,
f=pi24and Xp = p£§,4(olo/'02,3,4). The cartesian square (4.6.8) shows f induces a map fo = Pro4 :
X5 — Y; it is induced by base-change from the proper map ps 4 and hence is proper. X; = f~1(¥3).
Now X;NX, = U while ViNY; = U and fi,» : X1 X5 = YiNY3 is the map fr.5.4. Let P = i1 2.5} 5B,
L =iy 4.p5 4K and L' = iy 5 4. Rpj 4K [—4d]. (One readily observes the existence of a pairing PQ L — L'
on Y - see the arguments in (4.4).) The commutativity of the top-square follows from the arguments
in step 2. The commutativity of the second square from the top follows from the commutative square
(4.6.8) and the observation (4.6.9) in step 2. (The bottom row in this square is the map p , 4 ® id.)
The identification in the bottom-part of the right-most column results from an application lemma (4.3).
This completes the proof of the commutativity of the diagram in (4.6.11).

Next consider the composition:

(o) (o)
Hr* vo (Ui2,34; E) @ H* oo (U1,2,3,45 D5 3 4(P3 4(i3,4+K)))
Gp7 b4 (T (D)) Gz b (T 23T
o 000
=Hr (Ur2,345 BE) @ H (p35.4(U 2,34); P5 3.4(RP3 4 K)[—2d))

Gp1 b (p73(0)
- HE( U; Rﬁ!2,3,4Rﬁ§,4K[_4d]) = H*G( U; Rﬁ§,3,4Rﬁ!2,4K[_2d]) = HZ( U; Rﬁll,z,4Rﬁ!2,4K[_2d])
The last equality follows from the equality of the maps py 4 © P2 34 = P24 © p1,2,4. The first equality
follows from an application of lemma (4.3) to the commutative diagram

0000 0000
n

ﬁ2,3,4l lﬁ2,3,4

000 000

B ——
Uazsa P34 Uszsa

ﬁ\x A

00

U
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(where n(u1,u2,uz,us) = (u1,us,u2,uq)). It should be now clear (see the bottom part of step 2) that
the composition of the top three maps in the right-most column of the diagram (4.6.11) may be identified
with the composition of the above maps above. Now apply the map

0000

Pr2ax : HG (U 12,345 RPY 5 4RPY 4K [—4d)) — HE (U 12,45 Rp} (K [—4d)).

Now another application of lemma (4.3) identifies the last term with

HY, (U 1,2,4; RP 4K [—4d)).
Finally one applies the map

000

Prax : Hy (U 12,45 Rpy 4K[—4d]) — H (U; K[—4d)).

Step 4. (Compare this with the proof of (3.4).) We will first summarize the results of the three steps
above. These show that the composition of the maps forming the bottom row and the bottom half of
the right-most column in (4.6.*) is obtained as the composition of the maps in (4.6.12) through (4.6.16).

- Jo Jo ok ok o
P1,2,4°P1,0®P2 3,4°P2 3 ®P2,3,4°P3,4\
7

(4.6.12) H, (U3 D) @ W (U3 D) © By (U K)

00
H, (p1 5401 3(U)); B} 54951 28 ) @ HY (955.4 (P23 (U)); B3 3,455 3D ) OHE, (3 5 4(054(U)); 53 5,475 4 K)

0 = 0 = o =
* . ok sk * . sk ok * . ok ok
~ W (Ut,2,3,45 11,2457 2,457 2DE) @ HE (U1,2,3,45 62,3455 3455 3D5) @ HE (U1,2,3,45 13,4455 3 493 4 K)

- 00 0000
For each triple i # j # k, let 4; pz_]lk(pz_]l(Uz,])) — U 1,2,3,4 denote the obvious closed immersion

induced by i; ;. Now one may identify i1,2.5} 5 485 o (DE) = i 5 461,245} 2 Ri} o E = P} 5 401,24 R0} opf o(E) =

= =! .. = ~ ~ = =! i
i1,24 Riy 9P 5 4PT o E. Similarly iz 3.5 3 495 3(DE) = i2,3:Riz 3p5 3 495 s E. Moreover pj 5 4p5 4(i3,4.K) =
i3,4xD5 3 405 4 K. Therefore one may identify the last term with

0 o

(U1,2,3,45 PI,2,4PT,2(E)) ® H* ) (U1,2,3,4§ p§,3,410§,3(ﬁ))

(4.6.13) H* e
Gap2_,3,4 (p£3(U))

_1 _1,99
GaP1,2,4 (Pl,z(U))
o

QH* (U1,2,3,45 P53 3,.4P5 4(i3,4+ K))

Gpz} a3 i(0)
Clearly the latter maps naturally to

o 0
(4.6.14) BT ooo (U1,2,3,45 P 24 (P12(E)))OH - ooo (Un,2,3,45 95 3,4 (P53 3(E)2p5 4(i3,4. K)))

Gp1s,a(P13(U)) Gp,4(U)

o

~ H* oo (U1,2,3,45 DT 2 4(P] 2(E))) ® H*
Gl 4 T (TY) P LRATL2 G

o o
= H oo (U1,2,3,45 Y 2,405 2(E) @ p5 3 4 (05 4(i3,4:.K))) = B oqo0 (U1,2,3,4; P53 ,3,4(P3 4(13,44K)))

) )

o
%) (U1,2,3,45 P53 ,3.4(P3 4 (03,44 K)))

0000

= HY (Ur,2,3,45 ixRi'D3 3405 4(i3,4.K))) = He (U 5 Rpy 5 4 Rp; 4 K[—4d))

The steps 1 through 3 show that one needs to apply the map p1 4« © P1,2,4« to the last term in order
to complete the definition of the product:

(4.6.15) H (U ; Rﬁé’3’4Rp'374K[—4d]) =Hg (U ; Rﬁi,2,4Rﬁ'2,4K[—4d])
PN Wy (U ; Rph  K[—4d) = Hy (U 5 Rp} K[—4d]) =25 Hy, (U; K[-4d))
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If one considers the composition of the top row and the top half of the right-most column in (4.6.*), one
may show that it is obtained as the composition of the following maps. (In the place of the projection-
formula (2.P.10)(ii)’ used in step 3, one will need to use (2.P.10)(i)’ instead.)

- P . -
P1,2,3°P1,2®P1 2,3%P2 3®P1 3,49P3,4
7

Hy, (U; Dg) © Hy, (U; De) © W (U; K)

00 00 [e]e]
(4.6.12)’ H*G(pl_%ii(pl_% (0)); 15{,2,315{,2DE) ® H*G(Pf;3(P2_§(U))a 15{,2,3153,3]1)13) ® H&(Pl_,éA 3_,411(U))5
D1 3,495 4K)

o — o - o =
~ HE, (U1,2,3,45 61,241 2,351 2D ) @ HE; (U1,2,3,45 92,34P7 2,355 305) ® HE; (U1,2,3,45 13,4455 3,455 4 K)

— 0o [ = 00 9
= -1 ¢ -1 = -1 ¢ -1 :
(Here 41 : py53(p12(U)) — Ui234 and i34 : py34(p34(U)) — Ui2,34 are the obvious closed
. . . . = ~ ~ = ~ -1 = 1
immersions.) One can identify 41,2:p1 5 351 2(DE) = P 2 31,2401 2R3 o E = pI 5 gi1,24 Riy opT 5 (E) =
= =! A = . ~ = =! . = ~ -
01,24 Ry 57 2 3P] o E. Similarly z2,3*1732,31’;,3(]D)E) = 2,3+ Riy 3p7 5 305 3 E and pi3,4p§’4(13,4*K) ~ 43,447 3,403 4 K.
Therefore one may identify the last term with

o 0

(4.6.13)" H* oo (U1,2,3,45 PT,2,3PT,2(E)) ® H* (U1,2,3,45 pf’2,3p§’3(ﬁ))

G755 (p15(0)) G.p7 s 5(p53(U))

[

QH* (U1,2,3,45 P1 3,4P5,4(13,4 K))

Gpih (A1)
Clearly the latter maps naturally to

o

(4.6.14) I oo (Ur,2,3,45 P 2,3(PT 2(E) ® pj 3(E))) @ H o (U1,2,3,4 D1 3,4P3,4 (13,44 K))

Gal’l,Z,s( U) G’Pf,é,‘L(pg_,};(U))

[

o
~ H* 000 (U1,2,3,4; P 23(p3 3(E))) ® H* (U1,2,3,45 P 3,405 4(13,4: K))

G.piss(U) G.p75.4(p54(U))

o [ — —
= I oo (U1,2,3.45 E® P} 3 405 4(i3,44K)) = Hg (U1,2,3.45 1 Ri' (] 3 405 4 (13,44 K)))

)

= HZ‘( U; Rﬁi,3,4R15'3,4K[_4d])

If we apply an argument corresponding to those in steps 1 through 3 for the composition of the top row
and the top half of the right column in (4.6.*), one sees that now it is necessary to apply the map

0000 0o
Prax 0 Pr3ax : Hy (U ; Rpy 5 4RPy 4K [—4d]) — HE, (U; K[—4d))

to complete the corresponding product. To see that this map is in fact defined, apply lemma (4.3) to
the commutative diagram:

0000 0000
73,4 U
P1,3 4l lﬁl,s,z;
000 000
- 5
U 1,3,4 3,4 U 1,3,4
A P3,4
00
Us
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000 000
Here 34 : U — U is the permutation that interchanges the first and third factors and the map

0000 0000

m3a: U — U is induced by the above map. This identifies the last term in (4.6.11) with Hg(o?;o;
Rp, 5 4RP, 4K[—4d]). Now one simply applies the map

(4.6.15)" pr,ax © Prg,a : H (U 5 RpY 5 4Rpy 4K [—4d]) — H (U; K[~4d)).

To see that the maps in (4.6.12) through (4.6.14) are the same as the maps in (4.6.12)’ through
(4.6.14)’ one may observe p; 2 0 pi1,24 = P1,2 0P1,2,3, P2,3 °P2,3,4 = P2,3°P1,2,3, P34 ©P2,3.4 = P34 ° P1,34
and use the associativity of the usual tensor-product-pairing in equivariant hypercohomology. To see
that the map in (4.6.15) is identical to the map in (4.6.15)’ one observes: p1,40p1,2.4 = P1,4©P1,3,4. This
completes the proof of theorem (4.6). O

(4.7) Corollary. Assume the situation in (4.5). (i) If K Dg’G(?fo; Q), Hg(ﬁ, K*) has the structure
of a left as well as right module over the convolution-algebra Hg 4, defined in (3.2.7).

00
(ii) The above structures are natural in K e DZ’G(U ; Q) and with respect to closed subgroups of G.

(iii) If H is a closed normal subgroup with finite index, and K e D;’G’G/ H(ﬁ; Q) the group G/H

has a natural action on ]HI}{(Z;,Z*K *) that is compatible with the structures in (i) and (ii). (Here
i: EHxX — EGéX is the obvious map.)
H

Proof. (i) is clear from (4.6). One uses the pairing Q ® K (the pairing K ® Q — K) to obtain the
left-module structure (the right-module structure, respectively ). Now (ii) and (iii) are clear from (4.5).
Note: the above module structures do not provide a bi-module structure - see section 6.

Next we consider questions of compatibility of the convolution with the ring structure on KZ(U).

(4.8) Assume the situation of (4.4). Let  : U x U — U denote the obvious map. Since [ : U—Uis
proper, it follows by base-change, that  is also proper. Now 7 induces a map K (U) K g([i’ (); [j' ) 2,
K§ ((l} [>j (Z’) (Here ¢ is the obvious map from equivariant K-cohomology to K-homology sending a locally
free coherent sheaf to itself viewed only as a coherent sheaf.)

(4.9)Proposition. If a e K&(U) and 8 € K&(U)

P(m* (@) * ¢(x*(B)) = p(m™(a U B)) P1,3(4(1))

where ¢(1) € K(?(Iofx((}) is the image of the class 1 € Kg((?xlof)
U U

Proof. ¢(m* () * ¢(m*(B)) = P1,3«(B] 28(7" (@) ® P5 5¢(7™(B)))- Since pi ,¢(m* () ® p3 36(7*(B)) has

supports in U, one may identify it (as a K-theory-class) with af 57 2¢(7* (@) ® a3 3P5 36(7*(8)) =
000 00

$(p7 2(m* () ® 3 5(7(8))) = ¢(B1 5(r* (@) ® 7*(B)). (Recall a;j : U — p, ;(U) is the obvious map.)

The last identification results from the observation 7 o p; ; = 7 o 1 3. Therefore

P(m*(a)) * (" () = P13+ ($(P] 3(7" () @ 7*(8)))) = (7" (e U f))-P1,34(6(1))

by the projection formula. O

34



(4.10) Corollary. (i) If p13.(¢(1)) = ¢(1) € K§(UxU), it follows that the map 7* in (4.8) sends

o o
the cup-product on K&(U) to the convolution on K§'(UxU). The above map is injective, if, in addition
7o ($(1)) is a unit in K§ (U).

(ii) If, in addition, the obvious map R(G) — K2(U) is also injective, one obtains an imbedding of

o 9
the representation ring R(G) into the convolution algebra K§ (UxU).
U

(iii) If, in addition to the hypotheses in (i), the natural transformations K2 (U) — mo(K3;°(U)) and
00

K§(U) — mo (Kﬁ‘{fs(ﬁ)) (see (2.12)) are isomorphisms, the map 7* sends the cup-product on HE (U; Q)
to the convolution on HE (g, Q.

Proofs of all the assertions except the second one in (i) and (iii) are clear. The second assertion

in (i) follows readily from the projection formula applied to the map w. Observe that the maps
M 00

mo(K#5(U) ® Q = m(KiP(U) @ Q <k, HY, (U; Q) and the corresponding ones for U are iso-

morphisms on completing the first term at the augmentation ideal. (Recall K(U)® Q is a commutative
00

sub-algebra of the convolution algebra K§(U) ® Q and that the latter is also finitely generated as a mod-

ule over K2(U)® Q. Therefore the completion of K§ (Z?) ® Q may be identified with the tensor-product

00

K§(U)®Q ,® (K2(U)® Q). ~) This proves (iii). O
K (U)®Q

5. Applications to Hecke algebras and to affine quantum groups of type A,..
In this section we will consider the examples in (3.1)(i)-(iv) in more detail.

(5.1.1) Let G denote a connected reductive algebraic group over C. We will let B denote the variety
of all Borel-subgroups of G. Let U denote the variety of all unipotent elements in G. Making use
of the exponential mapping from the Lie algebra g of G to G, one may observe that U is isomorphic
to the variety N/ of nilpotent elements in g. (The inverse of this isomorphism from U to A will be
denoted by log.) Let T*B denote the cotangent bundle to B; observe that one may identify 7*B with
the desingularization of U (see [Stein-2]) given by A = {(u, B)|u e U, B € B and u € B}. (One may now
identify the obvious map p: A — U given by (u, B) = u with the moment-map T*B — N.)

(5.1.2) The group G = G x C* acts on A on the right by (u, B).(g9,q) = (97 .u%.g, g~'.B.g). (Here
the exponent u? is defined as follows: log(u?) is the element glog(u). To see that this in-fact defines a
right-action one may consider the corresponding action on N.)

(5.1.3) Moreover one may define a right-action of G x C* on the unipotent variety U by u.(g,q) =
g tul.g, u € U. The stabilizer at u will be denoted M (u). Now observe that the unipotent conjugacy-
class C, containing a given unipotent element u and its closure are stable under this action; moreover
the map p: A = U is also G x C*-equivariant.

(5.1.4). One may also observe U ~ N is a cone and that for the induced action of the torus C* =
1 x C* C G xC* on U, the only fixed point is the origin; this defines a contraction of U to its origin.
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00

(5.2)Proposition. (a) The map 7* : K&(U) — K§(U) sends the tensor-product to the convolution
in the following cases: (3.1)(i), (3.1)(ii) and (3.1)(i)(s,1), (3.1)(i%)(s,1) Where (s,1) € G x C* is a fixed
semi-simple element, G = Zg(s) x C* and U (((}) is replaced by U1 (by (((})(S*l), respectively ). The
same holds in the case of (3.1)(iv) and (3.1)(iv)(s,1) where (s,1) € GL(C*) x C* is a fixed semi-simple
element and G = Zgp(ce)(s) x C*

(b) The map 7* : H;(U; Q) — HY (OUQ, Q) sends the cup-product to the convolution in the following
cases: (3.1)(i), (3.1)(ii). The same holds in the cases (3.1)(i)(s,1) and (3.1)(ii)(s,1) where (s,1) e G x C*

[ (371)

[
is a fixed semi-simple element, G = Zg(s) x C* and U, U are replaced by UV, U respectively .

Proof. (a) We will first consider the case of (i) in (3.1). Now U = Spec C and U =B and f:B — Spec
C is the obvious map. Now the Borel-Weil-Bott theorem shows Rf.(Op) = Rf.(f*(C)) = C. It
follows that Rp1 3.(OpxpxB) = Opxp- Since Opxp represents the class 1 € K&(B x B) 2 K§ (B x B),
it follows by an argument as in (4.9) and (4.10) that one obtains an injection of R(G) = K2(U)
into the convolution algebra K§ (B x B) defined in (3.2.3). It is shown in [J-7] (5.3.3) that the map
K§ (B x B) — mo(K ) 4(B x B)) is an isomorphism. Therefore the equivariant Riemann-Roch theorem
in (2.12) now proves that the obvious map H*(BG; Q) = H(U; Q) — H; (B x B; Q) is an injection
sending the cup-product to the convolution. An entirely similar argument applies to the case B = the
variety of all parabolics conjugate to a given one. (Observe that the Borel-Weil-Bott theorem holds for
G/ P also; in fact this follows from the Borel-Weil-Bott theorem for all G/B.)

Next we will consider (ii) in (3.1). Now one obtains the commutative squares:

KY(U) —— K§(U) HL(U;Q) —— Hy(U;Q)
KQ(U) —— KI(U) Hi(U;Q) —— H(T;Q)

where the two vertical maps are split injections (as shown in [J-7] (6.2) or [T-2] Theorem (1.13)) and
where T' denotes a maximal torus of G. Recall G = G x C* and hence T'= T x C*, for a maximal torus
T of G. Moreover the vertical maps on the right-hand-sides preserve the convolutions defined in (3.2.3)
and (3.2.7) as shown by Theorem (4.5). Therefore it suffices to prove the proposition with the group G

00

00
replaced by T'. i.e. it suffices to show that the maps K3(U) — K$(U) and H}(U;Q) — H}(U;Q) are
injections sending the cup-product on the first term to the convolution on the last. Let p denote the
prime ideal in R(T') corresponding to the sub-torus C* = 1 x C* in T'. Localizing at p, now one obtains
the isomorphisms

" 00 oo .
K3(U), =~ K§(US) ~ K§(pt), = R(T), and K§ (U), ~ K§ (U)% ), ~ K{ (B x B),.
and similar ones in equivariant cohomology. Let ¢ denote the map from equivariant K-cohomology to
equivariant K-homology. If 7, ( p1,3«) denotes the map induced in equivariant K-homology by 7 (p1,3,
respectively ), one may now observe

m($(1)) = $(1) in R(T), and pr s (6(1)) = ¢(1) in K (B x B),.

Therefore the conclusions of (4.10) (i) and (ii) are true after localization at p. To see that the second
00

holds before localization at p, it suffices to observe that KT (U) is a projective module over R(T).
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(See [C-G] (6.5.13).). (The first also very likely holds without localizing K%.(U) at p; this will involve
showing K9.(U) is a torsion free.) This completes the proof of (a) for (3.1)(ii) and the proofs of (3.1)(iv),
(3.1)(i)(s,1), (3-1)(ii)(s,1) and (3.1)(iv)(s,1) are similar. (Obsere that one may easily reduce the case of
(3.1)() (5,1)> (3-1)(44)(s,1), (3-1)(iV)(s,1) to the case of (3.1)(i), (3.1)(ii) and (3.1)(iii) respectively .)

(b) The hypotheses of (4.10)(iii) are shown to be satisfied in [J-7](5.5) for (3.1)(i) and (3.1)(ii). (See
also [C-G].) One may readily reduce (3.1)(i)(s,1) and (3.1)(ii)(s,1) to the case of (3.1)(i) and (3.1)(ii)
respectively . O

(5.3.1). Assume the situation of (3.1)(i). Now theorem (4.6) shows there exists a functor:
Dg’G(B x B; Q) —(left- (and right) modules over the convolution algebra H, (B x B; Dg))

given by K- — H, (B x B; K*). As an example of such a complex one may take K- to be the equivariant

intersection cohomology complex on the closure of a G-orbit for the diagonal action of G on B x B. Or

one may start with a complex L- € D,f’G(Spec GC; Q) and let K- = n*(L) where 7 : EGx(B x B) — BG
G

is the obvious map.

(5.3.2) In the remaining cases of (3.1) we define two functors

J* and J': Dg’G(U; E) — (modules over the convolution algebra Hg(ﬁ, Dg))

Recall f : U — U, A: UsU-= IZ'EIOJ are the obvious maps. Let L € Dg’G(U;E). Now A, (f*(L"))
and A (Rf'(L)) € Dz’G(?/g; E). Therefore we let

JH (L) = Hg (U Au(f*(L))) and J (L) = Hg (U A« (RFH(L))-
In the case of (3.1)(ii), recall that U = a G x C*-stable open sub-variety of the unipotent variety of

G and f : U — U is the map induced by p: A — U. Therefore, one may take L' to be the equivariant
intersection cohomology complex on the closure of a unipotent conjugacy-class in U. The convolution
algebra (with U = U), in this case, is the graded Hecke algebra associated to G; the bivariant form
of the equivariant Riemann-Roch theorem in (3.3) now shows the modules provided by the functors in
(5.3.2) are also modules over the corresponding affine Hecke algebra. Let E = Q. Taking L' = 5(Q),

where j : C, — U is the closed immersion of a unipotent conjugacy class, one may now verify that
J* (L) = Hg o (Acys pe, (Q) = Hyyp, (Bu; Q) and
J(L) = H e (Ac,; Rug, (Q) = HY ™ (B,; Q).

where pc, : A¢, — Cy is the map induced by p. The first isomorphisms on either line follow from the
observation that j is a closed immersion. The second isomorphisms on either line follow from (2.P.3)’
with H =G xC*, H= M(u), X = By and X = (B, x G x C*)/M(u) = A¢,. If (s,q) € M(u) CG x C*
denotes a fixed semi-simple element, one obtains corresponding functors defined on D;’ZG"C*(S’Q)(U (s:0),

Q) that provide modules over the graded Hecke-algebra H*(BZgxc+ (s,q); Q) ® H*(BG x C*;
H* (BGxC*;Q)

Q). If L = 51(Q), where j : c{#? — U9 is the closed immersion associated to a unipotent conjugacy

class, then

J* (L) = H}ch* (s,q) (A(,’ffﬂ); uzgs,q)(@)) = HJTl(u)ﬁZGx,C* (s,q) (B'lsu Q) a’nd
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T (L) =y (0 Ao Bitl,, (@) = HI Mo 0052, q).

where o) 2 Apea) = ¢ is the obvious map induced by u.

Let G be the complex dual group associated to a p-adic reductive group G,. Now the correspondence
between modules over the affine Hecke algebra and p-adic representations of G, shows our constructions
make the equivariant derived category on the unipotent variety of G an abundant source of such p-adic
representations.

The case of (3.1)(iii) seems to be somewhat less explored as of now. Somewhat related to it is the
case of graded Hecke algebras with unequal parameters and this is considered in detail in [L-1], [L-2]
and also in [J-8].

Next we consider the case of (3.1)(iv). First we recall the following results from ([G-V] sections 7 and
8). Let Uq(gl;) denote the quantized enveloping algebra associated to the affine Cartan matrix of the
root system R,y (see [Dr]). Let U denote the quotient of Uq(s/l;) obtained by specializing the central
elements C, C~! to 1. Now it is shown in ([G-V] section 8) that there exists a sequence of algebra
homomorphisms:

00

Uy(sln) = U = Kg"< (U)
where the last one has the structure of the convolution algebra defined as in (3.2.3). Now one may

00
compose this with the obvious map (as in (3.3)) into the convolution algebra HE 1, (cay xce (U; Dp)
defined as in (3.2.7). Therefore the functors considered in (5.3.2) now provide functorial constructions of
modules over the algebra Uq(s/l;) starting with the equivariant derived category Dg’GL"(Cd)XC* (U; Q.
Observe that U = {z € Endc(C?)|z™ = 0}; clearly this is a sub-variety of the variety of all nilpotent
elements in the lie-algebra gl4(C?). If (s, q) € GL,(C%) x C* is a fixed semi-simple element, one may define

¢,z C c*
a similar construction of modules starting with the equivariant derived category D, Gra(ehxE (U9,

Q.

6. The effect of the natural anti-involution on the module structures

[e]e]
In this final section we will consider the natural anti-involution on the convolution algebra HE (U; Q)
and its effect on the module structures we have constructed in section 4.

oo 00
Assume the situation of (3.1). Now the map 7 : U — U interchanging the two factors induces an

[e]e] 00
anti-involution 7* on H¢(U; Q) in the following sense. If 7*(a), 7*(a’) € HY(U; Q) are homogeneous
of degree n and n' respectively,
(6.1) T (axa') = (=)™ (7*(a') * 7 (a))
(See [C-G] (3.5.9) for the case of the affine Hecke algebra. This will also follow from our more general

00
result (6.3) below. In case HS (U; Q) = 0 for all odd n as in many of the examples, there is no need for
the factor (—1)™"".)

0o

(6.2) We will view the map 7* : U — U as an action of the finite group Z/2.Z on the space U

00
commuting with the given diagonal action of G on U. Therefore the discussion (1.2.4) applies; we
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[e]e)
therefore obtain an induced action of Z/2.Z on the simplicial space EGXU and the corresponding
G

00 00
derived category D,?’Z/ 2'Z(U; Q). Next assume that K e Df’z/ 2'Z(U ; Q). Now the results of (2.P.4)

00 00
apply to define an action of Z /2.Z on the equivariant homology group HE (U; Q) as well as on H, (U;
K). We will denote this by 7* as well.

00

(6.3)Proposition. Assume the situation in (6.2). Let o € HY (ﬁ, Q) = H* (10]2; Q) and B € H (U;

G,U
9
K)=H" ,,(U? i,(K)). Assume that 7*(a) is homogeneous of degree n and that 7*(3) is homogeneous

G,U
of degree m. Now

ek f) = (=1)""(r*(B) x 7" (a))
Proof. We will use the terminology adopted in sections 3 and 4. Observe (from (4.4)): 7(a * 8) =
o o
71 5(P1,3+(A* (P} 2 (@) x P5 5(8)))). Here 71 3 : U> — U? is the map interchanging the two factors which

[ o
are indexed by 1 and 3. Let 71 3 : U 3 — U? denote the corresponding map that interchanges the factors
indexed by 1 and 3. (Recall that the above factors are indexed by 1, 2 and 3.) The x on the right-hand-
side denotes the cross-product - see [Iver] chapter II, section 10. Now the last term may be identified
with

(6.3.1) P1,3«71 3" (A (B} () X 55 3(B))) = P13« (A* (71 5"} o) x 74 575 3(B)))
= P13(A%(3,3(77 () X P] o(7(8))))

The last equality follows from the commutative squares:

! !

(CIAEEN o s ey 8
P2,3JV er,z Pl,zl lm,s
02 T 02 02 T 02
Us — U Uvs: —— U

Now the last term in (6.3.1) may be identified with
(6-3.2) P13« (AT (P75 (7" (B)) x P3,3(7"(a))))

[ [ [ [
Here T : U3 x U3 — U x U is the map that interchanges the two factors. Observe that any K € Dy (U;
Q) is provided with pairings Q ® 4. (K) — i * (K) and i,(K) ® Q — 4,(K) so that the triangle:
(63.3)Q ®i.(K) —2 i(K)®Q

~.

K

commutes. We therefore obtain the commutative triangle:

03 03 03 03
slig o (U ;Q) ® H* oo (U 501 284(K)) —>H* 0o (U 507 204(K)) ® H* 0 (U ;Q
G,p;;w)( ) G,p;;<U)( 120 (K)) — G,p;;(m( 120+ (K)) G,p;,;(U)( )
(6.3.4) \ l
03
H* .. (U ;11,2,3*1T,2,3PT,2(Z*(K)))

G, U
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where the two unmarked maps are A* and are induced by the inclined maps in (6.3.3). (On the left (right)
we have used the pairing QRp} 5ix(K) — i1,2,3417 2 397 2 (ix (K)) (PT 204 (K)®Q — i1,2,3417 5 397 2 (14 (K)),
respectively ).) Recall (see [Iver] p. 128) that the cup-product defined as the composition of the pull-
back by A and the cross-product is graded commutative. Therefore, (using the pairing on the right in
(6.3.4)), one may now identify the term in (6.3.2) with

Pra«((=1)"" A% (] 5 (77 (8)) x D5 3(77(a)))) = (=1)™ 7" Pu,s(A (BT 2 (77(B)) x P5 3(7*(a))))
= (=)™ (B) * 7 (). O
(6.3.4)Remark. This result clearly requires that K have a left and right module structure over Q,

which is clear. This clearly fails if Q is replaced by a locally constant sheaf of rings that is in general
non-commutative; therefore (6.3) does not generalize to the case of unequal parameters.

(6.4) Assume throughout the rest of the paper that ]HIS(;]O, Q) = 0 for all odd n. Let M denote a
[e]e]
left-module over the convolution algebra HY(U; Q). Using the anti-involution 7* we may convert the
above left-module-structure into a right-module-structure as follows:
(6.4.1) me h =71*(h) om,

00 00
Here m € M, h e HS(U; Q); the operation e is the new one while o is the given operation of HS(U;

00
Q) on M from the left. We will let M (7) denote M viewed as a right-module over HE (U; Q) using the
above structure.

(6.5.1) Let L € D,f’G([j'; Q). Now the group Z/2.Z acts trivially on Uand L. EA:U U = I(}EIOJ

denotes the obvious map, it is clear A, (L) € DS’Z/Z'Z(& Q) and that the action of Z/2.Z on the latter
is trivial.
(6.5.2) Now the pairing Q® L — L (L®Q — L) induces the structure of a left-module (right-module,
respectively ) over the convolution algebra HY ((()/9, Q) on H&(([)/g, A,(L)). The left-module-structure
oo 00 00
(the right-module-structure) on H, (U; A, (L)) will be denoted by H, (U; A.(L))r (HE (U; Ax(L))r,

respectively ).

(6.5.3) Theorem. Assume the above situation. Now we obtain the isomorphism of right-modules
over HE(U; Q):

Hg (U; Ax(L)r = Hg (U; Au(L))L(7)
Proof. This follows immediately from (6.3) and (6.4.1) since Z/2.Z acts trivially on H&(ﬁ, AL(L)). In
more detail, the right-module-structure on HY, (U; A.(L))g is given as follows. Let h ¢ HE(U; Q) and
m € HE (U; Ay(L)). Now m * h = 7*(h) * m. The last equality follows from (6.3). (Recall 7*(m) = m
and that HzG(ﬁ, Q) = 0 for all odd i. Therefore deg(h) and deg(m).deg(h) are even.) By (6.4.1)
™(h)*m=meh. O

Remark. Observe that this theorem applies to all the modules constructed by the functors J* and J*
in (5.3.2). We will apply this in the forthoming paper [J-6] to provide a general construction of self-dual
modules starting with equivariant perverse sheaves on the variety U.
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Appendix.

Let G denote a complex linear algebraic group acting on a variety X and let H denote a closed
subgroup. We assume that G and H are in general not necessarily connected. Let H act on G x X by
h.(g,z) = (g.h™1, hz), he H, g e G and ¢ X. Then a geometric quotient G x X exists for this action

H

and the map s : G x X — GxX is smooth with fibers isomorphic to H. Now G acts on G x X by
translation on the first factor; It{his induces a G-action on GxX as well. One verifies that the map s is
equivariant for these actions of G. Let p: GxX — X denotthhe map induced by the map G x X - X
which is defined by (g, ) — (g-z). One I\jeriﬁes that p is G-equivariant for the G-action on GxX
as in (6.2.3) and the G-action on X. It follows that p defines a map p : EGé(GEX) — EGéX. II{Jet
r:GxX -G (>§X = X denote the projection to the second factor.

Next let G x H act on G x X by (g1, h1).(9, ) = (g1ghi*, hiz), g1, g€ G, h1 ¢ H and z ¢ X. We
observe that the maps r and s are such that we obtain the commutative squares:

(GxH)x(GxX) — GxX (GxH)x(GxX) —— Gx X
praxs | | o | |

It follows that r and s induce maps 7 : E(G x H)Gx (GxX)— EHxX
xH H
and 5: E(Gx H) x (GxX)—> EGx(GxX).
GxH G H

Let A : H — G x H denote the diagonal and let j : X — G X X denote the map x — (e, x) where e
is the identity element of G. We now observe that the square

HxX — X

! |

GxH)x(GxX) —— GxX

commutes. It follows that j and A induce a map j : EH I)}X — E(GxH )é(G x X); one checks readily
that 7 o j = the identity. We denote 50 j by 3.

(A.1)Theorem. Under the above assumptions the functors :
- c,G ; 5" c¢,GxH .
Dyf(x;Q —"— DpPH(G x X; Q) and DyT(GXX; Q) —— DG x X3 Q)
are equivalences of categories. Hence so are the functors j* and i*.

Proof. This theorem is proved in [J-5] Theorem (6.4) under the hypotheses that G and H are connected.
The same proof applies here verbatim; we will however outline a proof that the functors are fully-faithful.
(See [J-7] (6.4) for the remaining details.) Observe first that the fibers of each r, (s,) is isomorphic to
G*™ (H*™, respectively ). Therefore observe that the fibers of the simplicial map 7 (5) are isomorphic
to the simplicial space EG (EH, respectively); hence these have trivial cohomology with respect to any
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locally constant abelian sheaf. (Observe that, since EG and EH are contractible, any locally constant
sheaf on them is actually constant.)

Since (EG)o = G any constructible G-equivariant abelian sheaf on EG is locally constant. (Recall
that a sheaf F' = {F,|n} on a simplicial space X. is locally constant if (i) Fp is locally constant on Xg

and (ii) F' has descent as in (1.2.1).) If K is a constructible G-equivariant abelian sheaf on EG X (@ X X),
5*(K) is a G x H-equivariant constructible sheaf on E(G x H) x (G x X). It follows that that the

GxH
cohomology sheaves of 3*(K) are locally constant on the fibers of 5; recall these fibers were observed to

be =2 EH which is contractible irrespective of whether H is connected or not. Therefore, the fibers of §
are acyclic with respect to §*(K). Now it suffices to observe that each of the maps 5, is cohomologically
proper (i.e. base-change in cohomology holds with respect to any map a : Z — (EG é(G EX ))n and
for the pair (5,, 5%(K,))) to be able to apply Corollary (A.9) of [J-5] that shows the natural map
K ={K,|n} = {Rsn«s;, Kn|n} induces an isomorphism

(A.1.1) Ht(EGé(GEX); K) ~ HY(E(G x H)G;(H(G x X); 5*K))

As these isomorphisms are natural in K they induce a map of the hypercohomology spectral sequences
proving thereby that such an isomorphism holds for any K¢ D%(GxX). (Recall that the above derived
H

categories consist of bounded complexes.) If P, Q ¢ D,f’G(G I>§X ; Q) one lets K = RHom(P,Q); this
shows that 5* induces an isomorphism:

Hong,c(G;;X;Q)(P, Q) — HOng,GxH(GXX;Q)(E*(P), 5(Q))

This proves §* is fully-faithful even if G and H need not be connected. The proof that 7 is fully-
faithful is similar. Since ¥ o j = the identity, it follows that j* is also fully-faithful. Since 50 j = 4, it
also follows that the map i* is fully-faithful. O

Next we consider the map i : EH;(IX — EGéX. Let i* : D2Y(X; Q) — D™(X; Q) be the obvious

restriction functor. Let Degx x (DEmxx) denote the dualizing complex (as defined in (1.4.2)) of the
G H
category Dg’G(X; 0) (Dg’H(X; Q), respectively ); let Dpgx x = RHom( ,Dpaxx) Derxx = RHom(
G G H
, DEgr« x), respectively ). If Ri' = Dggx x 0i* o Degx x, then one obtains the natural identification:
H H G
(A.2) Ri' ~i*: DYY(X; Q) — DPY(X; Q)

Proof is clear from the observation that D ga x), = @®(") ®Dx and Dgpxx), = @®(”) ® Dy, where
G H

Dx denotes the dualizing complex for the category Dg(X; Q).
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