
Kunneth decomposition

for quotient varieties
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Terminology and notation

• k: a field of arbitrary characteristic

• All schemes projective over k

• A scheme Y is pseudo-smooth if it is of the

form X/G, X smooth, G a finite group.

• The theory of correspondences extends to

pseudo-smooth projective schemes with ratio-

nal coefficients. (cf. Fulton). CH∗
Q(X) =

CH∗(X) ⊗ Q. ◦: composition of correspon-

dences.

• Any Weil cohomology theory extends to pseudo-

smooth schemes.
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Definition: Chow Kunneth decomposition

d = dim(X). Then X has a Chow Kunneth

decomposition if there exist πiεCHd
Q(X×

k
X) so

that [∆X] = Σ2d
i=0πi, πi ◦ πj = 0, i 6= j and

πi ◦ πi = πi. If cl denotes the cycle map into

any Weil cohomology, cl(πi) = a Kunneth com-

ponent of cl([∆X]).
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Theorem(Beauville, Denninger-Murre, Shermenev)
Let A be an abelian variety of dimension d over
a field k. Then there exists a Chow-Künneth
decomposition for A:

∆A =
2d∑

i=0

πi. �

Our main result:

Theorem. Let A be an abelian variety of di-
mension d over a field k and G a finite group
acting on A such that g(0) ∈ A(k) is a torsion
point for each g ∈ G. Let f : A −→ A/G be
the quotient map. Suppose ∆A =

∑2d
i=0 πi is

a Chow-Künneth decomposition for A and let

ηi =
1

|G|
(f × f)∗πi.

Then
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∆A/G =
2d∑

i=0

ηi

is a Chow-Künneth decomposition for A/G. �

Examples

• Symmetric products of abelian varieties

• Smooth quotients of abelian varieties that

are not abelian varieties (in pos. char) due to

Igusa, Mehta and Srinivas
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Remark.

The hypothesis g(0) be a torsion point of A

not always satisfied.

Key property:

f∗ : CH∗
Q(A/G) −→ CH∗

Q(A)G

is an isomorphism with inverse
1

|G|
f∗.
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Descent Lemma. Suppose X is a pseudo-

smooth projective variety of dimension d and

G a finite group of automorphisms of X. Let

f : X −→ Y = X/G be the quotient map and

suppose

∑
g,h∈G

(g × h)∗∆X =
2d∑

i=0

ρi

where ρi ◦ ρj = 0 if i 6= j, ρi ◦ ρj = |G|2ρi if

i = j and the ρi are G × G-invariant, i.e. for

any g, h ∈ G, (g × h)∗ρi = ρi.

Then

∆Y =
2d∑

i=0

1

|G|3
(f × f)∗ρi

is a Chow-Künneth decomposition for Y .
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Proof(outline). We have

(f × f)∗(f × f)∗ = |G|2,
∑

g,h∈G(g × h)∗ = (f ×
f)∗(f × f)∗ and (f × f)∗∆X = |G|∆Y ,

and therefore:

|G|2(f × f)∗∆X = (f × f)∗
∑
i

ρi

Hence

∆Y =
1

|G|3
∑
i

(f × f)∗ρi

Remains to show that (f × f)∗ρi are mutually

orthogonal. Follows by similar argument. �

8



In Denninger-Murre, a crucial step is: for any
integer n,

(n× 1)∗` = n`

where ` :the first Chern class of the Poincaré
bundle.

The analogous strategy in our context:

Proposition There is an infinite subset E ⊂ N
such that for all n ∈ E,

(n× 1)∗(g × 1)∗` = n(g × 1)∗`.

Proof. For each g ∈ G, g = τag ◦ g0 where
τag is translation by ag, ag = −g(0), g0 = a
homomorphism (of abelian varieties). Let mg

= the order of ag = −g(0). Next, let m =∏
g∈G mg, and

E = {n ∈ N : n ≡ 1(mod m)}
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Note: if n ∈ E, mg divides n−1 (for any g), so
nag = ag.

For n ∈ E:

(n× 1)∗(g × 1)∗` = (n× 1)∗(g0 × 1)∗(τag × 1)∗`

Since g0 is a homomorphism, n ◦ g0 = g0 ◦ n;
therefore the last expression equals

(g0 × 1)∗(n× 1)∗(τag × 1)∗`

Since ag = nag, this equals

(g0 × 1)∗(τnag × 1)∗(n× 1)∗`

= (g0 × 1)∗(τag × 1)∗(n× 1)∗`

Since (n× 1)∗` = n`, the last term equals,

n(g0 × 1)∗(τag × 1)∗` = n(g × 1)∗` �
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The next step in the proof of our main Theo-

rem is to construct the elements ρi appearing

in Lemma; for each i, we simply set

ρi =
∑

g,h∈G

(g × h)∗πi

where πi are the Chow-Künneth components

of ∆A.

Clear from the formula that the ρi are G × G-

invariant and that
∑2d

i=0 ρi =
∑

g,h∈G(g, h)∗∆A;

so it remains to prove that they are mutually

orthogonal. In preparation for this, we study

the action of (1× n)∗ on ρi:

Proposition For n ∈ E, (1 × n)∗(g × h)∗πi =

n2d−iπi. Hence, (1× n)∗ρi = n2d−iρi.
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Proof. Observe: (1 × n)∗(g × h)∗πi = (1 ×
n)∗(g×1)∗(1×h)∗πi = (g×1)∗(1×n)∗(1×h)∗πi,

so it suffices to consider the case g = 1.

Next review the definition of the πi: first, con-

sider A ×k A as an abelian A-scheme via pro-

jection on the first factor; with respect to this

structure, the dual abelian scheme is A ×k Â.

Then the Fourier transform

FCH : CH∗
Q(A×k A) −→ CH∗

Q(A×k Â)

is defined by FCH(α) = p13∗(p12
∗α · F ), where

F = 1×
∞∑

i=0

`i

i!
∈ CHQ(A×k A×k Â)

pij represent projections from A ×k A ×k Â on

the ith and jth factor. (Note:the sum defining

F is actually finite.)
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Dualize this construction, to define

F̂CH : CH∗
Q(A×k Â) −→ CH∗

Q(A×k A)

by F̂CH(γ) = q13∗(q
∗
12γ · F̂ ), where

F̂ = 1×
∞∑

i=0

t`i

i!
∈ CH∗

Q(A×k Â×k A)

and qij represent the various projections from

A×k Â×k A. Switching the last two factors,

F̂CH(γ) = p12∗(p
∗
13γ · F ).

Theorem of the square then shows F̂CH(FCH(α)) =

(−1)dσ∗α for all α ∈ CH∗(A×k A), and similarly

for the other composition.
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Observe that [∆A] ∈ CHd(A ×k A), and write
FCH([∆A]) =

∑2d
i=0 βi, where βi ∈ CHi

Q(A ×k

Â).

πi = (−1)dσ∗F̂CH(βi)

Now:

(1× n)∗(1× h)∗πi = (−1)dσ∗(1× n)∗(1× h)∗F̂CH(βi)

From the definition of F̂CH this identifies with:

(−1)dσ∗(1×n)∗(1×h)∗p12∗(p13
∗βi ·(1×

∞∑
i=0

`µ

µ!
))

However, deg(F̂CH(βi) = d, all terms except
with µ = 2d− i vanish. Using base-change one
identifies the latter with:

(−1)dσ∗p12∗(p
∗
13βi·(1× 1

(2d−i)!((n×1)∗(h×1)∗`2d−i)))
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At this point, our earlier observations imply

that for an infinite set of ns, this identifies

with:

n2d−i(−1)dσ∗p12∗(p
∗
13βi·(1× 1

(2d−i)!((h×1)∗`2d−i)))

Reversing the arguments, one identifies this

with n2d−i(1×h)∗πi. This concludes the proof

of the last proposition. �

To prove orthogonality of the ρi, we need a

version of Liebermann’s trick; first the follow-

ing simple lemma:

Lemma For every g, h ∈ G, ρj◦(g×h)∗∆A = ρj.
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Proposition(Liebermann’s trick) For every i,

j, i 6= j, ρi ◦ ρj = 0.

Outline of proof. Suppose n ∈ E. By our

earlier result,

n2d−jρj = (1× n)∗ρj

= (1× n)∗(ρj ◦∆A)

By the last Lemma, the last term equals

1
|G|2(1× n)∗(ρj ◦

∑
g,h(g × h)∗∆A)

= 1
|G|2(1× n)∗(ρj ◦

∑2d
i=0 ρi)

One shows this is equal to: 1
|G|2

∑2d
i=0 n2d−i(ρj ◦

ρi)
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Hence

n2d−j((ρj ◦ ρj)− |G|2ρj) +
∑
i6=j

n2d−i(ρi ◦ ρj) = 0

for all n ∈ E. Since E is infinite, this forces

ρi◦ρj = 0 for all i 6= j, and also ρj ◦ρj = |G|2ρj.

�

Remarks

• One may show readily that the cycle map is

compatible with Kunneth decomposition.

• The Kunneth components for pseudo-smooth

schemes satisfy Poincaré duality, i.e. η2d−i =
tηi
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Definition: Strong Kunneth decomposition

X any scheme of pure dimension d. X pos-
sesses a strong Künneth decomposition if there
exist elements ai,j, bi,j ∈ CHi

Q(X) such that

[∆X] =
∑
i

∑
j

ai,j × bd−i,j

�

Exercise: Strong Kunneth decomposition im-
plies a Chow Kunneth decomposition

Proposition Let X and Y be pseudo-smooth
proper varieties and f : X −→ Y a finite surjec-
tive map. If X has a strong Künneth decom-
position, then Y also has a strong Künneth
decomposition.

Corollary Let X be a pseudo-smooth quasi-
projective variety, G a finite group of automor-
phisms of X. If X possesses a strong Künneth
decomposition, so does Y = X/G.
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Example (Symmetric Products of projective

spaces)

Let ` ∈ CH1
Q(Pm

k ) be the class of a generic

hyperplane in Pm
k . Pm

k has a strong Künneth

decomposition:

∆Pm
k

=
∑m

i=0 `i × `m−i

Let X = (Pm
k )n. By the Künneth formula:

∆X =
∑

0≤i1,...,in≤m fi1,...,in

where fi1,...,in = `i1×. . .×`in×`m−i1×. . . `m−in ∈
CHmn

Q (X ×k X).

Let Y = X/Sn and q : X −→ Y the quotient

map.
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Applying (q × q)∗ to the strong Künneth de-
composition for ∆X given above, and noting
that deg q = n!:

(n!)∆Y =
∑

0≤i1,...,in≤m

(q × q)∗fi1,...,in

=
∑

0≤i1≤i2≤...≤in≤m

∑
σ∈Sn

(q × q)∗fσ(i1),...,σ(in)

=
∑

0≤i1≤i2≤...≤in≤m

n!(q × q)∗fi1,...,in

Now let ¯̀i = q∗(`i). Then

∆Y =
∑

0≤i1≤i2≤...≤in≤m

(q × q)∗fi1,...,in

=
∑

0≤i1≤i2≤...≤in≤m

¯̀i1 × . . .× ¯̀in × ¯̀m−i1 × . . .× ¯̀m−in

giving a strong Künneth decomposition for Y .

Corollary CH∗(Y, Q, r)

∼= CH∗(Y, Q,0)⊗ CH∗(Spec k, Q, r)
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where CH∗(Z, Q, r) = πr(z∗(Z, .)⊗Q) and z∗(Z, .)

denotes the higher cycle complex of the scheme

Z.

Proof This follows readily from the above strong

Künneth decomposition for the class ∆Y and a

Theorem on the higher Chow groups of linear

schemes. �

See:

http://www.math.ohio-state.edu/˜ joshua/pub.html

or

http://www.math.ias.edu/˜ joshua
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