Kunneth decomposition for quotient varieties

Terminology and notation

- k : a field of arbitrary characteristic
- All schemes projective over k
- A scheme Y is pseudo-smooth if it is of the form $X / G, X$ smooth, G a finite group.
- The theory of correspondences extends to pseudo-smooth projective schemes with rational coefficients. (cf. Fulton). $C H_{\mathbb{Q}}^{*}(X)=$ $C H^{*}(X) \otimes \mathbb{Q} . \quad$ o: composition of correspondences.
- Any Weil cohomology theory extends to pseudosmooth schemes.

Definition: Chow Kunneth decomposition $d=\operatorname{dim}(X)$. Then X has a Chow Kunneth decomposition if there exist $\pi_{i} \varepsilon C H_{\mathbb{Q}}^{d}(\underset{k}{X \times X})$ so that $\left[\Delta_{X}\right]=\Sigma_{i=0}^{2 d} \pi_{i}, \pi_{i} \circ \pi_{j}=0, i \neq j$ and $\pi_{i} \circ \pi_{i}=\pi_{i}$. If $c l$ denotes the cycle map into any Weil cohomology, $c l\left(\pi_{i}\right)=$ a Kunneth component of $\operatorname{cl}\left(\left[\Delta_{X}\right]\right)$.

Theorem(Beauville, Denninger-Murre, Shermenev) Let A be an abelian variety of dimension d over a field k. Then there exists a Chow-Künneth decomposition for A :

$$
\Delta_{A}=\sum_{i=0}^{2 d} \pi_{i}
$$

Our main result:

Theorem. Let A be an abelian variety of dimension d over a field k and G a finite group acting on A such that $g(0) \in A(k)$ is a torsion point for each $g \in G$. Let $f: A \longrightarrow A / G$ be the quotient map. Suppose $\Delta_{A}=\sum_{i=0}^{2 d} \pi_{i}$ is a Chow-Künneth decomposition for A and let $\eta_{i}=\frac{1}{|G|}(f \times f)_{*} \pi_{i}$.

Then

$$
\Delta_{A / G}=\sum_{i=0}^{2 d} \eta_{i}
$$

is a Chow-Künneth decomposition for A / G. \square

Examples

- Symmetric products of abelian varieties
- Smooth quotients of abelian varieties that are not abelian varieties (in pos. char) due to Igusa, Mehta and Srinivas

Remark.

The hypothesis $g(0)$ be a torsion point of A not always satisfied.

Key property:

$$
f^{*}: C H_{\mathbf{Q}}^{*}(A / G) \longrightarrow C H_{\mathbf{Q}}^{*}(A)^{G}
$$

is an isomorphism with inverse $\frac{1}{|G|} f_{*}$.

Descent Lemma. Suppose X is a pseudosmooth projective variety of dimension d and G a finite group of automorphisms of X. Let $f: X \longrightarrow Y=X / G$ be the quotient map and suppose

$$
\sum_{g, h \in G}(g \times h)^{*} \Delta_{X}=\sum_{i=0}^{2 d} \rho_{i}
$$

where $\rho_{i} \circ \rho_{j}=0$ if $i \neq j, \rho_{i} \circ \rho_{j}=|G|^{2} \rho_{i}$ if $i=j$ and the ρ_{i} are $G \times G$-invariant, i.e. for any $g, h \in G,(g \times h)^{*} \rho_{i}=\rho_{i}$.

Then

$$
\Delta_{Y}=\sum_{i=0}^{2 d} \frac{1}{|G|^{3}}(f \times f)_{*} \rho_{i}
$$

is a Chow-Künneth decomposition for Y.

Proof(outline). We have

$$
\begin{aligned}
& (f \times f)_{*}(f \times f)^{*}=|G|^{2}, \sum_{g, h \in G}(g \times h)^{*}=(f \times \\
& f)^{*}(f \times f)_{*} \text { and }(f \times f)_{*} \Delta_{X}=|G| \Delta_{Y},
\end{aligned}
$$

and therefore:

$$
|G|^{2}(f \times f)_{*} \Delta_{X}=(f \times f)_{*} \sum_{i} \rho_{i}
$$

Hence

$$
\Delta_{Y}=\frac{1}{|G|^{3}} \sum_{i}(f \times f)_{*} \rho_{i}
$$

Remains to show that $(f \times f)_{*} \rho_{i}$ are mutually orthogonal. Follows by similar argument. \square

In Denninger-Murre, a crucial step is: for any integer n,

$$
(\mathrm{n} \times 1)^{*} \ell=n \ell
$$

where ℓ :the first Chern class of the Poincare bundle.

The analogous strategy in our context:

Proposition There is an infinite subset $E \subset \mathbf{N}$ such that for all $n \in E$,

$$
(\mathbf{n} \times 1)^{*}(g \times 1)^{*} \ell=n(g \times 1)^{*} \ell .
$$

Proof. For each $g \in G, g=\tau_{a_{g}} \circ g_{0}$ where $\tau_{a_{g}}$ is translation by $a_{g}, a_{g}=-g(0), g_{0}=$ a homomorphism (of abelian varieties). Let m_{g} $=$ the order of $a_{g}=-g(0)$. Next, let $m=$ $\Pi_{g \in G} m_{g}$, and

$$
E=\{n \in \mathbf{N}: n \equiv 1(\bmod m)\}
$$

Note: if $n \in E, m_{g}$ divides $n-1$ (for any g), so $n a_{g}=a_{g}$.

For $n \in E$:

$$
(\mathbf{n} \times 1)^{*}(g \times 1)^{*} \ell=(\mathbf{n} \times 1)^{*}\left(g_{0} \times 1\right)^{*}\left(\tau_{a_{g}} \times 1\right)^{*} \ell
$$

Since g_{0} is a homomorphism, $\mathbf{n} \circ g_{0}=g_{0} \circ \mathbf{n}$; therefore the last expression equals

$$
\left(g_{0} \times 1\right)^{*}(\mathbf{n} \times 1)^{*}\left(\tau_{a_{g}} \times 1\right)^{*} \ell
$$

Since $a_{g}=n a_{g}$, this equals
$\left(g_{0} \times 1\right)^{*}\left(\tau_{n a_{g}} \times 1\right)^{*}(\mathbf{n} \times 1)^{*} \ell$
$=\left(g_{0} \times 1\right)^{*}\left(\tau_{a_{g}} \times 1\right)^{*}(\mathbf{n} \times 1)^{*} \ell$

Since $(\mathbf{n} \times 1)^{*} \ell=n \ell$, the last term equals,

$$
n\left(g_{0} \times 1\right)^{*}\left(\tau_{a_{g}} \times 1\right)^{*} \ell=n(g \times 1)^{*} \ell \quad \square
$$

The next step in the proof of our main Theorem is to construct the elements ρ_{i} appearing in Lemma; for each i, we simply set

$$
\rho_{i}=\sum_{g, h \in G}(g \times h)^{*} \pi_{i}
$$

where π_{i} are the Chow-Künneth components of Δ_{A}.

Clear from the formula that the ρ_{i} are $G \times G$ invariant and that $\sum_{i=0}^{2 d} \rho_{i}=\sum_{g, h \in G}(g, h)^{*} \Delta_{A}$; so it remains to prove that they are mutually orthogonal. In preparation for this, we study the action of $(1 \times \mathbf{n})^{*}$ on ρ_{i} :

Proposition For $n \in E$, $(1 \times \mathbf{n})^{*}(g \times h)^{*} \pi_{i}=$ $n^{2 d-i} \pi_{i}$. Hence, $(1 \times \mathbf{n})^{*} \rho_{i}=n^{2 d-i} \rho_{i}$.

Proof. Observe: $(1 \times \mathbf{n})^{*}(g \times h)^{*} \pi_{i}=(1 \times$ $\mathbf{n})^{*}(g \times 1)^{*}(1 \times h)^{*} \pi_{i}=(g \times 1)^{*}(1 \times \mathbf{n})^{*}(1 \times h)^{*} \pi_{i}$, so it suffices to consider the case $g=1$.

Next review the definition of the π_{i} : first, consider $A \times_{k} A$ as an abelian A-scheme via projection on the first factor; with respect to this structure, the dual abelian scheme is $A \times_{k} \widehat{A}$. Then the Fourier transform

$$
F_{C H}: C H_{\mathbf{Q}}^{*}\left(A \times_{k} A\right) \longrightarrow C H_{\mathbf{Q}}^{*}\left(A \times_{k} \widehat{A}\right)
$$

is defined by $F_{C H}(\alpha)=p_{13 *}\left(p_{12} * \alpha \cdot F\right)$, where

$$
F=1 \times \sum_{i=0}^{\infty} \frac{\ell^{i}}{i!} \in C H_{\mathbf{Q}}\left(A \times_{k} A \times_{k} \widehat{A}\right)
$$

$p_{i j}$ represent projections from $A \times_{k} A \times_{k} \widehat{A}$ on the i th and j th factor. (Note:the sum defining F is actually finite.)

Dualize this construction, to define

$$
\hat{F}_{C H}: C H_{\mathbf{Q}}^{*}\left(A \times_{k} \widehat{A}\right) \longrightarrow C H_{\mathbf{Q}}^{*}\left(A \times_{k} A\right)
$$

$$
\begin{aligned}
& \text { by } \hat{F}_{C H}(\gamma)=q_{13 *}\left(q_{12}^{*} \gamma \cdot \hat{F}\right) \text {, where } \\
& \qquad \hat{F}=1 \times \sum_{i=0}^{\infty} \frac{{ }^{t} \ell^{i}}{i!} \in C H_{\mathbf{Q}}^{*}\left(A \times_{k} \hat{A} \times_{k} A\right)
\end{aligned}
$$

and $q_{i j}$ represent the various projections from $A \times_{k} \hat{A} \times_{k} A$. Switching the last two factors,

$$
\hat{F}_{C H}(\gamma)=p_{12 *}\left(p_{13}^{*} \gamma \cdot F\right) .
$$

Theorem of the square then shows $\hat{F}_{C H}\left(F_{C H}(\alpha)\right)=$ $(-1)^{d} \sigma^{*} \alpha$ for all $\alpha \in C H^{*}\left(A \times_{k} A\right)$, and similarly for the other composition.

Observe that $\left[\Delta_{A}\right] \in C H^{d}\left(A \times_{k} A\right)$, and write $F_{C H}\left(\left[\Delta_{A}\right]\right)=\sum_{i=0}^{2 d} \beta_{i}$, where $\beta_{i} \in C H_{\mathbf{Q}}^{i}\left(A \times_{k}\right.$ $\widehat{A})$.

$$
\pi_{i}=(-1)^{d} \sigma^{*} \widehat{F}_{C H}\left(\beta_{i}\right)
$$

Now:
$(1 \times \mathbf{n})^{*}(1 \times h)^{*} \pi_{i}=(-1)^{d} \sigma^{*}(1 \times \mathbf{n})^{*}(1 \times h)^{*} \widehat{F}_{C H}\left(\beta_{i}\right)$
From the definition of $\hat{F}_{C H}$ this identifies with:

$$
(-1)^{d} \sigma^{*}(1 \times \mathbf{n})^{*}(1 \times h)^{*} p_{12 *}\left(p_{13}{ }^{*} \beta_{i} \cdot\left(1 \times \sum_{i=0}^{\infty} \frac{\ell^{\mu}}{\mu!}\right)\right)
$$

However, $\operatorname{deg}\left(\widehat{F}_{C H}\left(\beta_{i}\right)=d\right.$, all terms except with $\mu=2 d-i$ vanish. Using base-change one identifies the latter with:

$$
(-1)^{d} \sigma^{*} p_{12 *}\left(p_{13}^{*} \beta_{i} \cdot\left(1 \times \frac{1}{(2 d-i)!}\left((\mathbf{n} \times 1)^{*}(h \times 1)^{*} \ell^{2 d-i}\right)\right)\right)
$$

At this point, our earlier observations imply that for an infinite set of $n \mathrm{~s}$, this identifies with:
$n^{2 d-i}(-1)^{d} \sigma^{*} p_{12 *}\left(p_{13}^{*} \beta_{i} \cdot\left(1 \times \frac{1}{(2 d-i)!}\left((h \times 1)^{*} \ell^{2 d-i}\right)\right)\right)$

Reversing the arguments, one identifies this with $n^{2 d-i}(1 \times h)^{*} \pi_{i}$. This concludes the proof of the last proposition. \square

To prove orthogonality of the ρ_{i}, we need a version of Liebermann's trick; first the following simple lemma:

Lemma For every $g, h \in G, \rho_{j} \circ(g \times h)^{*} \Delta_{A}=\rho_{j}$.

Proposition(Liebermann's trick) For every i, $j, i \neq j, \rho_{i} \circ \rho_{j}=0$.

Outline of proof. Suppose $n \in E$. By our earlier result,
$n^{2 d-j} \rho_{j}=(1 \times \mathbf{n})^{*} \rho_{j}$
$=(1 \times \mathbf{n})^{*}\left(\rho_{j} \circ \Delta_{A}\right)$

By the last Lemma, the last term equals
$\frac{1}{|G|^{2}}(1 \times \mathbf{n})^{*}\left(\rho_{j} \circ \sum_{g, h}(g \times h)^{*} \Delta_{A}\right)$
$=\frac{1}{|G|^{2}}(1 \times \mathbf{n})^{*}\left(\rho_{j} \circ \sum_{i=0}^{2 d} \rho_{i}\right)$

One shows this is equal to: $\frac{1}{|G|^{2}} \sum_{i=0}^{2 d} n^{2 d-i}\left(\rho_{j} \circ\right.$ ρ_{i})

Hence
$n^{2 d-j}\left(\left(\rho_{j} \circ \rho_{j}\right)-|G|^{2} \rho_{j}\right)+\sum_{i \neq j} n^{2 d-i}\left(\rho_{i} \circ \rho_{j}\right)=0$
for all $n \in E$. Since E is infinite, this forces $\rho_{i} \circ \rho_{j}=0$ for all $i \neq j$, and also $\rho_{j} \circ \rho_{j}=|G|^{2} \rho_{j}$. \square

Remarks

- One may show readily that the cycle map is compatible with Kunneth decomposition.
- The Kunneth components for pseudo-smooth schemes satisfy Poincaré duality, i.e. $\eta_{2 d-i}=$ ${ }^{t} \eta_{i}$

Definition: Strong Kunneth decomposition

X any scheme of pure dimension $d . \quad X$ possesses a strong Künneth decomposition if there exist elements $a_{i, j}, b_{i, j} \in C H_{\mathbf{Q}}^{i}(X)$ such that

$$
\left[\Delta_{X}\right]=\sum_{i} \sum_{j} a_{i, j} \times b_{d-i, j}
$$

\square

Exercise: Strong Kunneth decomposition implies a Chow Kunneth decomposition

Proposition Let X and Y be pseudo-smooth proper varieties and $f: X \longrightarrow Y$ a finite surjective map. If X has a strong Künneth decomposition, then Y also has a strong Künneth decomposition.

Corollary Let X be a pseudo-smooth quasiprojective variety, G a finite group of automorphisms of X. If X possesses a strong Künneth decomposition, so does $Y=X / G$.

Example (Symmetric Products of projective spaces)

Let $\ell \in C H_{\mathbf{Q}}^{1}\left(\mathbf{P}_{k}^{m}\right)$ be the class of a generic hyperplane in \mathbf{P}_{k}^{m}. \mathbf{P}_{k}^{m} has a strong Künneth decomposition:
$\Delta_{\mathbf{P}_{k}^{m}}=\sum_{i=0}^{m} \ell^{i} \times \ell^{m-i}$

Let $X=\left(\mathbf{P}_{k}^{m}\right)^{n}$. By the Künneth formula:
$\Delta_{X}=\sum_{0 \leq i_{1}, \ldots, i_{n} \leq m} f_{i_{1}, \ldots, i_{n}}$
where $f_{i_{1}, \ldots, i_{n}}=\ell^{i_{1}} \times \ldots \times \ell^{i_{n}} \times \ell^{m-i_{1}} \times \ldots \ell^{m-i_{n}} \in$ $C H_{\mathrm{Q}}^{m n}\left(X \times_{k} X\right)$.

Let $Y=X / S_{n}$ and $q: X \longrightarrow Y$ the quotient map.

Applying $(q \times q)_{*}$ to the strong Künneth decomposition for Δ_{X} given above, and noting that $\operatorname{deg} q=n$!:

$$
\begin{aligned}
(n!) \Delta_{Y} & =\sum_{0 \leq i_{1}, \ldots, i_{n} \leq m}(q \times q)_{*} f_{i_{1}, \ldots, i_{n}} \\
& =\sum_{0 \leq i_{1} \leq i_{2} \leq \ldots \leq i_{n} \leq m} \sum_{\sigma \in S_{n}}(q \times q)_{*} f_{\sigma\left(i_{1}\right), \ldots, \sigma\left(i_{n}\right)} n!(q \times q)_{*} f_{i_{1}, \ldots, i_{n}} \\
& =\sum_{0 \leq i_{1} \leq i_{2} \leq \ldots \leq i_{n} \leq m}
\end{aligned}
$$

Now let $\overline{\ell^{i}}=q_{*}\left(\ell^{i}\right)$. Then

$$
\begin{aligned}
\Delta_{Y} & =\sum_{0 \leq i_{1} \leq i_{2} \leq \ldots \leq i_{n} \leq m}(q \times q)_{*} f_{i_{1}, \ldots, i_{n}} \\
& =\sum_{0 \leq i_{1} \leq i_{2} \leq \ldots \leq i_{n} \leq m} \bar{\ell}^{i_{1}} \times \ldots \times \bar{\ell}^{i_{n}} \times \bar{\ell}^{m-i_{1}} \times \ldots \times \bar{\ell}^{m-}
\end{aligned}
$$

giving a strong Künneth decomposition for Y.

Corollary $\mathrm{CH}^{*}(Y, Q, r)$

$$
\cong C H^{*}(Y, Q, 0) \otimes C H^{*}(\text { Spec } \quad k, Q, r)
$$

where $C H^{*}(Z, Q, r)=\pi_{r}\left(z^{*}(Z,.) \otimes \mathbb{Q}\right)$ and $z^{*}(Z,$. denotes the higher cycle complex of the scheme Z.

Proof This follows readily from the above strong Künneth decomposition for the class Δ_{Y} and a Theorem on the higher Chow groups of linear schemes. \square

See:
http://www.math.ohio-state.edu/~ joshua/pub.html or
http://www.math.ias.edu/~ joshua

