Kunneth decomposition
for quotient varieties



Terminology and notation
e k: a field of arbitrary characteristic
e All schemes projective over k

e A scheme Y is pseudo-smooth if it is of the
form X/G, X smooth, G a finite group.

e [ he theory of correspondences extends to
pseudo-smooth projective schemes with ratio-
nal coefficients. (cf. Fulton). CH@(X) =
CH*(X) ® Q. o: composition of correspon-
dences.

e Any Weil cohomology theory extends to pseudo-
smooth schemes.



Definition: Chow Kunneth decomposition

d = dim(X). Then X has a Chow Kunneth

decomposition if there exist meCHé(XxX) SO
k

that [Ax] = Z24ym;, mjom; = 0, i # j and
m; om; = m;. If cl denotes the cycle map into
any Weil cohomology, cl(m;) = a Kunneth com-
ponent of cl([Ax]).



Theorem(Beauville, Denninger-Murre, Shermenev)
Let A be an abelian variety of dimension d over

a field k. Then there exists a Chow-Kunneth
decomposition for A:

Ajp= Zm. L]

Our main result;:

Theorem. Let A be an abelian variety of di-
mension d over a field £k and G a finite group
acting on A such that g(0) € A(k) is a torsion
point for each g € G. Let f: A — A/G be
the quotient map. Suppose Ay = Y24 m; is
a Chow Kunneth decomposition for A and let

1, — @(f X f)xm;.

T hen



2d

Dy = D N
i=0

is a Chow-Kinneth decomposition for A/G. U
Examples
e Symmetric products of abelian varieties

e Smooth quotients of abelian varieties that
are not abelian varieties (in pos. char) due to
Igusa, Mehta and Srinivas



Remark.

The hypothesis g(0) be a torsion point of A
not always satisfied.

Key property:

f*: CHY(A/G) — CHE(A)C

: : : L 1
IS an isomorphism with inverse — f..

G|



Descent Lemma. Suppose X is a pseudo-
smooth projective variety of dimension d and
G a finite group of automorphisms of X. Let
f: X — Y = X/G be the quotient map and
suppose

Z (QXh) AX_ZP’L
g,heG

where p;0p; = 0 if i # j, p;op; = |G]%p; if
¢ = 5 and the p; are G x G-invariant, i.e. for
any g,h € G, (g x h)*p; = p;.

T hen

2d

=0

is a Chow-Kunneth decomposition for Y.



Proof(outline). We have

(f x D+(f x £)* =1G1%, Lgnealy x b)* = (f x
Y x )« and (f x fl«Ax = |G|Ay,

and therefore:
GIP(f x Pex = (F X )« pi

Hence

Ay = 2 X Ppi

IGI3

Remains to show that (f x f)«p; are mutually
orthogonal. Follows by similar argument. [



In Denninger-Murre, a crucial step is: for any
integer n,

(nx 1)4=nt

where ¢ :the first Chern class of the Poincaré
bundle.

The analogous strategy in our context:

Proposition There is an infinite subset £ C N
such that for all n € F,

(nx 1)*(gx1)4=n(gx1)*.

Proof. For each g € G, g = 74, © go Where

Ta, IS translation by ag, ag = —g(0), go = a
homomorphism (of abelian varieties). Let myg
= the order of ag = —g(0). Next, let m =

E={neN:n=1(mod m)}



Note: if n € E, mg divides n—1 (for any g), so
nag — CLg.

For n € E:

(mx1)*(gx1)%=(nx1)"(gox 1) (rq, x 1)"¢

Since gg is @ homomorphism, no gg = gg o n;
therefore the last expression equals

(90 x 1)"(n x 1)" (74, x 1)™¢

Since ag = nag, this equals
(90 X 1)*(Tha, X 1)*(n x 1)*¢
= (90 X 1)*(7q, x 1)*(n x 1)*¢

Since (n x 1)*¢ = n¥¢, the last term equals,
n(go X 1)"(7a, x 1) =n(g x 1)*¢ O
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The next step in the proof of our main Theo-
rem is to construct the elements p; appearing
in Lemma; for each ¢, we simply set

pi= > (gxh)'m

g,heG

where m; are the Chow-Kiunneth components
of AA-

Clear from the formula that the p; are G x G-
invariant and that Y24, 0, = Y neq(9, h)* A 4;
SO it remains to prove that they are mutually
orthogonal. In preparation for this, we study
the action of (1 x n)* on p;:

Proposition For n € E, (1 xn)*(g x h)*m;, =
n2d=ir. Hence, (1 x n)*p;, = n2d—ip..
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Proof. Observe: (1 xn)*(g x h)*m; = (1 X
n)*(gx1)*(Ixh)*m;, = (gx1)*(1 xn)*(1 xh)*m;,
so it suffices to consider the case g = 1.

Next review the definition of the m;: first, con-
sider A X A as an abelian A-scheme via pro-
jection on the first factor; with respect to this

structure, the dual abelian scheme is A x; A.
Then the Fourier transform

is defined by FCH(O‘) = p13*(p12*04 . F), where

o0 )

14 _
F=1x Z—IECHQ(AxkAxkA)

7::0 7/-

p;j represent projections from A xj; A x; A on
the ith and jth factor. (Note:the sum defining

F' is actually finite.)
12



Dualize this construction, to define

by Fop(v) = q13.(ai5y - F), where

oo t;m

F=1x Z—IECHE!(AxkAAxkA)

i=0 v

and q;; represent the various projections from
A xp A xp A. Switching the last two factors,

For(y) = p12.(pizy - F).

Theorem of the square then shows Foy(Fog(a)) =
(—1)%o*a for all a € CH*(A x; A), and similarly
for the other composition.
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Observe that [A 4] € CHYA x; A), and write
Fou([Aal) = X224 6;, where 8; € CHGL(A Xy
A).

mi = (=1)%*Fop(8;)

Now:

(1 x n)*(1 x h)*m; = (—=1)%*(1 x n)*(1 x h)*Fou(8;)

From the definition of Foy this identifies with:

M

(—1)%*(1 xn)*(1 x h)*p12,(p13*6;- (1 x Y M!))

1=0

However, deg(F-(3;) = d, all terms except
with u = 2d — 1 vanish. Using base-change one
identifies the latter with:

(—~1)%0* P12, (Ph36; (1% oy (X 1)* (hix 1) *£24=i)))
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At this point, our earlier observations imply
that for an infinite set of ns, this identifies
with:

n20=i(—1)do*py o, (pt 46 (1 xﬁ((hx 1)*¢2d=%)))

Reversing the arguments, one identifies this
with n2¢=%(1 x h)*m,. This concludes the proof
of the last proposition. []

To prove orthogonality of the p;, we need a
version of Liebermann’s trick; first the follow-
ing simple lemma:

Lemma For every g,h € G, pjo(gxh)* Ay = p;.
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Proposition(Liebermann’s trick) For every i,
gyt 73, piop; =0.

Outline of proof. Suppose n € E. By our
earlier result,

n?4=Jp; = (1 x n)*p,
= (1 xn)*(pjoly)
By the last Lemma, the last term equals
2z (L xm)*(pj 0 Sg g X h)* A 4)
G|2(1 X n)* (,0] o Zzzgo 0i)
One shows this is equal to: ﬁzzdo n2d=i(p;o

i)
16



Hence

n24I((pjopp) — 1GI%p) + Y n? " (p;op;) =0
]

for all n € E. Since E is infinite, this forces
piop; = 0 for all i # j, and also p;op; = |G|?%p;.
[]

Remarks

e One may show readily that the cycle map is
compatible with Kunneth decomposition.

e T he Kunneth components for pseudo-smooth

schemes satisfy Poincaré duality, i.e. nog_; =

tn;
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Definition: Strong Kunneth decomposition

X any scheme of pure dimension d. X pos-
sesses a strong Kiinneth deCQmposition if there
exist elements a; ;,b; ; € CH}’Q(X) such that

[Ax] =) > a;;jxbg_;;
T g

]

EXxercise: Strong Kunneth decomposition im-
plies a Chow Kunneth decomposition

Proposition Let X and Y be pseudo-smooth
proper varieties and f : X — Y a finite surjec-
tive map. If X has a strong Kunneth decom-
position, then Y also has a strong Kunneth
decomposition.

Corollary Let X be a pseudo-smooth quasi-
projective variety, G a finite group of automor-
phisms of X. If X possesses a strong Kunneth
decomposition, so does Y = X/G.
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Example (Symmetric Products of projective
spaces)

Let ¢ € CH&Q(P"I’C’”‘) be the class of a generic
hyperplane in P};“. Pzn has a strong Kunneth
decomposition:

APZL =y gt x4t
Let X = (P}")". By the Kinneth formula:

Ax = 30<ii,...in<m Ji1,..,in

where f;, i = L1x. . xfnxfM™ix M~ g
CHE™"(X X X).

Let Y = X/S, and ¢ : X — Y the quotient
map.
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Applying (g X ¢)« to the strong Kiinneth de-
composition for Ax given above, and noting
that deg ¢ = n!:

(n)Ay = > (@XQxfiy..

0<i1,.r in<m

= > > (@ X Dxfoir).... olin)

0<i1<px <. .<in<m oc€ESy

= > n!(q X @)xfiy,...in

0<i3<12<...<tn<m

Now let ¢ = ¢4 (¢!). Then

Ay = > (@ X @)«fiqy,.. in
0<11<12<...<in<m
— > Pl x . x 0nox M ox . x M-

0<i1<1p<...<in<m
giving a strong Kunneth decomposition for Y.

Corollary CH*(Y,Q,r)

= CH*(Y,Q,0) @ CH*(Spec  k,Q,r)
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where CH*(Z,Q,r) = m(2*(Z,.)®Q) and z*(Z, .)
denotes the higher cycle complex of the scheme
Z .

Proof This follows readily from the above strong
Kinneth decomposition for the class Ay and a

Theorem on the higher Chow groups of linear

schemes. L[]

See:

http://www.math.ohio-state.edu/™ joshua/pub.html
or

http://www.math.ias.edu/~ joshua
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